Example 4: Counting Binary Bits
CS483-05 Analysis of Recursive Algorithms and Brute
e |nput: A positive decimal integer n.
Force
e Output: The number of binary digits in n’s binary representation.
Algorithm 0.1: COUNTBINARYBITS(N)
count =1
Instructor: Fei Li whilen > 1
Room 443 ST Il] count = count + 1
o
Office hours: Tue. & Thur. 4:30pm - 5:30pm or by appointments n = Ln/QJ
lifei@cs.gmu.edu with subject: CS483 return (count)
http://www.cs.gmu.edu/~ lifei/teaching/cs483 fall07/
kThis lecture note is based on Introduction to The Design and Analysis of Algorithms by Anany Levitin.) k)
CS483 Design and Analysis of Algorithms 1 Lecture 05, September 11, 2007 CS483 Design and Analysis of Algorithms 2 Lecture 05, September 11, 2007

Analysis of Recursive Algorithms

= Analysis of Recursive Algorithms = The iteration method
= e Expand (iterate) the recurrence and express it as a summation of terms
- depending only on n and the initial conditions.
° = The substitution method
L = Master Theorem
L] (To be introduced in Chapter 4.)

. J . J

CS483 Design and Analysis of Algorithms 3 Lecture 05, September 11, 2007 CS483 Design and Analysis of Algorithms 4 Lecture 05, September 11, 2007

| Iteration Method: Examples

e Tower of Hanoi

_

J

CS483 Design and Analysis of Algorithms 5

Lecture 05, September 11, 2007

| Iteration: Example

en!T(n)=T(n—-1)+1)

Tn) = Tn—-1)+1
= Tn—2)+1)+1
= T(n—2)+2
= T(n—1)+1
= TO0)+n=n

e Tower of Hanoi (T'(n) = 2T'(n — 1) + 1) 22?2

_

J

CS483 Design and Analysis of Algorithms 6

Lecture 05, September 11, 2007

Tower of Hanoi (T'(n) = 2T (n — 1) + 1)

T(n) = 2T(n—1)+1
= 22T(n—2)+1)+1
= 2°T(n—2)+2+1

= 2T(n—di)4+27 4 41

— 2”—1T(1>+2n—1 +2n—1 ++1
n—2

= 27T+) 2
=0

— 277,71_'_277,71_1
= o

_

J

CS483 Design and Analysis of Algorithms 7

Lecture 05, September 11, 2007

Analysis of Recursive Algorithms

B The iteration method

e Expand (iterate) the recurrence and express it as a summation of terms

depending only on n and the initial conditions.

B The substitution method
1. Guess the form of the solution

2. Use mathematical induction to find the constants

B Master Theorem

_

J

CS483 Design and Analysis of Algorithms 8

Lecture 05, September 11, 2007

|Substitution Method: Example 1

e Count number of bits (T'(n) = T'(|n/2]) + 1)
- Guess T'(n) < logn.

|Substitution Method: Example 1

T(n) = T(|n/2])+1
e Count number of bits (T'(n) = T(|n/2]) + 1) < log(|n/2])+1
< log(n/2)+1
< (logn —log2)+1
< logn—1+1
= logn

. J . J

CS483 Design and Analysis of Algorithms 9 Lecture 05, September 11, 2007 CS483 Design and Analysis of Algorithms 10 Lecture 05, September 11, 2007

| Substitution Method: Example 2

e Tower of Hanoi (T'(n) = 2T (n — 1) + 1)

| Substitution Method: Example 2 — Guess 1'(n) < 2".
e Tower of Hanoi (T'(n) =2T(n— 1)+ 1)
) () T(n) = 2T'n—1)+1
< 2.2l 4
< 2"+1, wrong

. J . J

CS483 Design and Analysis of Algorithms 11 Lecture 05, September 11, 2007 CS483 Design and Analysis of Algorithms 12 Lecture 05, September 11, 2007

| Substitution Method: Extension F,

- Guess T'(n) < 2",

e Tower of Hanoi (T'(n) = 2T (n — 1) + 1)

T(n) = 2T(n—1)+1
< 2.2t
< 2" 41, wrong!
- GuessT'(n) < 2" —1,
CS483 Design and Analysis of Algorithms 13 Lecture 05, September 11, 2007

T(n) = 2T(n—1)+1
< 202"t —1) 41
= 2" -2+1
= 2" —1, correct!
CS483 Design and Analysis of Algorithms 14 Lecture 05, September 11, 2007

Substitution Method: Extension [,

Substitution Method: Extension F),

e Fibonacci Numbers (Fy =0, Fy =1, F, = F,,_1 + F,,_9)

_

J

CS483 Design and Analysis of Algorithms 15

Lecture 05, September 11, 2007

o F, o< Fh_1<F,,Vn>1

_

Fibonacci Numbers (Fp =0, Fy = 1, F,, =

n—1+t Fn—2)

J

CS483 Design and Analysis of Algorithms

16

Lecture 05, September 11, 2007

Substitution Method: Extension £,

Fibonacci Numbers (Fyp =0, Fy =1, F, = Fj,_1 + F},_9)
e Fy o< Fph_1<F,,Vn>1
e Assume 2" < F, < 2"

e Guess [, = c- 9", 1 < ¢ < 2.

_

J

CS483 Design and Analysis of Algorithms 17

Lecture 05, September 11, 2007

-

Substitution Method: Extension 7,

Fibonacci Numbers (Fy =0, Fy =1, F, = Fj,_1 + F},_9)
o I o< Fy_y <Fn7vn2 1
e Assume 2"l < F,, < 2"

e Guess [, = c- 9", 1 < ¢ < 2.

J

c.d)n _ C'¢n71+6'¢n72
¢ = ¢+1
5 1+5
B 2
General solution: Fj, =c¢1 - ¢7 + ca - @5
Fi=0F=1
CS483 Design and Analysis of Algorithms 18 Lecture 05, September 11, 2007

General solution: F,, =c¢1 - ¢F + ca - @5

F=0FK=1

_

J

CS483 Design and Analysis of Algorithms 19

Lecture 05, September 11, 2007

Summary: Algorithm Analysis

= Order of growth of functions

> Analyze algorithms’ order of growth (using asymptotic notations).
e Non-recursive algorithms
e Recursive algorithms
a. The iteration method

b. The substitution method
c. Master Theorem (to be introduced) (T'(n) = aT'(n/b) + f(n).)

_

J

CS483 Design and Analysis of Algorithms 20

Lecture 05, September 11, 2007

B Analysis of Recursive Algorithms

> Brute Force
e |deas
e Examples: Selection Sort & Bubble Sort
e Examples: String Matching

e Examples: Exhaustive Search

_

J

CS483 Design and Analysis of Algorithms 21

Lecture 05, September 11, 2007

Brute Force — Ideas I

based on the problem statement and definitions of the concepts involved.

_

= Brute force is a straightforward approach to solve a problem, usually directly

J

CS483 Design and Analysis of Algorithms 22

Lecture 05, September 11, 2007

B Analysis of Recursive Algorithms

B Brute Force
e |deas
e Examples: Selection Sort & Bubble Sort
e Examples: String Matching

o Examples: Exhaustive Search

_

J

CS483 Design and Analysis of Algorithms 23

Lecture 05, September 11, 2007

Selection Sort & Bubble Sort

= Given n orderable items, sort them in non-decreasing order.

_

J

CS483 Design and Analysis of Algorithms 24

Lecture 05, September 11, 2007

-

Selection Sort

B Given 1 orderable items, sort them in non-decreasing order.

= Input: An array A[0, ..., n — 1] of orderable elements.

Algorithm 0.2: SELECTIONSORT(AO, - - -1 — 1))

fort =0ton — 2

min =4
forj=¢+1ton—1
do if A[j] < A[min]

do
then min = j

Swap A[i] and A[min]

_

B Output: An array A[O, ce,n = 1] sorted in non-decreasing order.

J

CS483 Design and Analysis of Algorithms 25

Lecture 05, September 11, 2007

4)

. J

Selection Sort

Analysis
® |nput size: n.
e Basic operation: A[j] < A[min]

® Running time:

C(n) = z_: z_: 1

i=0 j=i+1
n—2 n—2

= D n-1)-(@-1)+1]=> (n—1-1)
1=0 =0

~ (n=1D)n

B 2

= 0(n?

CS483 Design and Analysis of Algorithms 26

Lecture 05, September 11, 2007

-

Bubble Sort

B Given n orderable items, sort them in non-decreasing order.
= Input: An array A[0, ..., n — 1] of orderable elements.

B Output: An array A[O7 ce,n— 1] sorted in non-decreasing order.

Algorithm 0.3: BuBsLESORT(A[O, - --n — 1])

fort =0ton —2
forj=0ton—2—1
do] it Alj + 1] < A[j]
then Swap A[j] and A[j + 1]

_

J

CS483 Design and Analysis of Algorithms 27

Lecture 05, September 11, 2007

_

4)

Bubble Sort

Analysis
e |nput size: n.
e Basic operation: A[j + 1] < A[j]

® Running time:

C(n) = Z i'l

CS483

i=0 =0
n—2 n—2
= [(n—2—z)—0+1]=2(n—1—z)
=0 =0
~ (n—=1Dn
N 2
= 0(n?
/
Design and Analysis of Algorithms 28 Lecture 05, September 11, 2007

e Examples: String Matching

_

J

CS483 Design and Analysis of Algorithms 29

Lecture 05, September 11, 2007

| String Matching

= Given a string of n characters called the text; and a string of m characters
called the pattern, find a substring of the text that matches the pattern.

= Input: An array T'[0, . .., n — 1] of n characters representing a text

Anarray P[0, ..., m] characters representing a pattern

= OQutput: The index of the first character in the text that starts a matching
substring or —1 if the search is unsuccessful

= Example: Pattern: 001011 Text: 10010101101001100101111010

Pattern: happy Text: It is never too late to have a happy childhood.

_

J

CS483 Design and Analysis of Algorithms 30

Lecture 05, September 11, 2007

| String Matching

fort =0ton —m
7=0
while j < mand P[j] = T[i + j]
do doj=7+1
ifj=m

then return (7)

return (—1)

_

Algorithm 0.4: STrRiNGMATCHING(T'[O0, - - - — 1], P[0, . ..

,m —1])

J

CS483 Design and Analysis of Algorithms 31

Lecture 05, September 11, 2007

String Matching

Analysis
e Input size: 1 + m.
e Basic operation: P[j] = T[i + j]

® Running time (worst-case):

Cn+m)=mn—-m+1) -m=0(nm)

_

J

CS483 Design and Analysis of Algorithms 32

Lecture 05, September 11, 2007

_

e Examples: Exhaustive Search

J

CS483 Design and Analysis of Algorithms

33 Lecture 05, September 11, 2007

Traveling Salesman Problem

> TSP: Find the shortest tour through a given set of 1 cities that visits each city
exactly once before returning to the city where it starts.

2

_

J

CS483 Design and Analysis of Algorithms 34

Lecture 05, September 11, 2007

Tour

Cost

a—b—c—d—a
a—b—-d—c—a
a—c—b—d—a
a—c—d—b—a
a—d—b—c—a

a—d—c—b—a

24+3+7+5=17
24+44+7+8=21
8+3+4+5=20
8+7+4+2=21
5+4+34+8=20
S+T7T+3+2=17

_

J

CS483 Design and Analysis of Algorithms

35 Lecture 05, September 11, 2007

| Traveling Salesman Problem

Analysis
e Inputsize: n - (n — 1).

® Running time:

C(n)=(n—1)1/2.

_

J

CS483 Design and Analysis of Algorithms 36

Lecture 05, September 11, 2007

-

~N

Knapsack Problem
= Knapsack Problem: Given n objects, each object 7 has weight w, and value
v;, and a knapsack of capacity W/, find most valuable items that fit into the
knapsack Example: Knapsack capacity W = 16
Items are not splittable)
Item Weight Value
gl) 5 530
3 10 $50
ﬁ?ﬁ' 4 5 $10
CS483 Design and Analysis of Algorithms 37 Lecture 05, September 11, 2007 CS483 Design and Analysis of Algorithms 38 Lecture 05, September 11, 2007
Subset Total weight Total value
{1} 2 $20
{2} 5 $30
{3} 10 $50 Knapsack Problem
{4} 5 $10
Analysi
{1,2} 7 $50 nalysis
{1,3} 12 370 ® Input size: n (items).
{1,4} 7 $30 o
® Running time:
{2,3} 15 $80
2,4} 10 $40 The number of subsets of an n-element set is 2".
{3,4} 15 $60
{1,2,3} 17 not feasible c Q2"
n) = .
{1,2,4} 12 $60 () ()
{1,3,4} 17 not feasible
{2,3,4} 20 not feasible
{1,2,3,4} 22 not feasible
CS483 Design and Analysis of Algorithms 39 Lecture 05, September 11, 2007 CS483 Design and Analysis of Algorithms 40 Lecture 05, September 11, 2007

Assignment Problem

Find the assignment with the minimum total cost.

> Assignment Problem: There are n people to execute n jobs, one person per
job. If ith person is assigned the jth job, the costis C'[é, j|, 4,5 = 1,...,n.

Job 1 Job 2 ‘ Job 3 ‘ Job 4
Person 1 9 2 7 8
Person 2 6 4 3 7
Person 3 5 8 1 8
Person 4 7 6 9 4
. J
CS483 Design and Analysis of Algorithms 41 Lecture 05, September 11, 2007

Assignment Problem

Analysis
® |nput size: n.

® Running time:

_

J

CS483 Design and Analysis of Algorithms 42 Lecture 05, September 1

1, 2007

Summary for Brute Force

= Strengths
1. Wide applicability
2. Simplicity
3. Yields reasonable algorithms for some important problems (e.g., matrix
multiplication, sorting, searching, string matching)
= Weaknesses
1. Rarely yields efficient algorithms
2. Some brute-force algorithms are unacceptably slow

3. Not as constructive as some other design techniques

_

J

CS483 Design and Analysis of Algorithms 43

Lecture 05, September 11, 2007

Summary for Brute Force

> Exhaustive-search algorithms run in a realistic amount of time only on very
small instances
= In some cases, there are much better alternatives
e Shortest paths (greedy)
& Minimum spanning tree (greedy)
e Assignment problem (iterative improvement)

= In many cases, exhaustive search or its variation is the only known way to get

exact solution

_

J

CS483 Design and Analysis of Algorithms 44

Lecture 05, September 11, 2007

Summary I

= Next class: Chap. 4 and Master Theorem.

> Read Chap. 3.

_

J

CS483 Design and Analysis of Algorithms 45

Lecture 05, September 11, 2007

