Example 4: Counting Binary Bits
CS483-05 Analysis of Recursive Algorithms and Brute
e |nput: A positive decimal integer n.
Force
e Output: The number of binary digits in n’s binary representation.
Algorithm 0.1: COUNTBINARYBITS(N)
count =1
Instructor: Fei Li whilen > 1
Room 443 ST Il ] count = count + 1
o
Office hours: Tue. & Thur. 4:30pm - 5:30pm or by appointments n = Ln/QJ
lifei@cs.gmu.edu with subject: CS483 return (count)
http://www.cs.gmu.edu/~ lifei/teaching/cs483 fall07/
kThis lecture note is based on Introduction to The Design and Analysis of Algorithms by Anany Levitin.) k )
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Analysis of Recursive Algorithms

= Analysis of Recursive Algorithms = The iteration method
= e Expand (iterate) the recurrence and express it as a summation of terms
- depending only on n and the initial conditions.
° = The substitution method
L = Master Theorem
L] (To be introduced in Chapter 4.)
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| Iteration Method: Examples

e Tower of Hanoi
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| Iteration: Example

en!T(n)=T(n—-1)+1)

Tn) = Tn—-1)+1
= Tn—2)+1)+1
= T(n—2)+2
= T(n—1)+1
= TO0)+n=n

e Tower of Hanoi (T'(n) = 2T'(n — 1) + 1) 22?2
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Tower of Hanoi (T'(n) = 2T (n — 1) + 1)

T(n) = 2T(n—1)+1
= 22T(n—2)+1)+1
= 2°T(n—2)+2+1

= 2T(n—di)4+27 4 41

— 2”—1T(1>+2n—1 +2n—1 ++1
n—2

= 27T+ ) 2
=0

— 277,71_'_277,71_1
= o
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Analysis of Recursive Algorithms

B The iteration method

e Expand (iterate) the recurrence and express it as a summation of terms

depending only on n and the initial conditions.

B The substitution method
1. Guess the form of the solution

2. Use mathematical induction to find the constants

B Master Theorem
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|Substitution Method: Example 1

e Count number of bits (T'(n) = T'(|n/2]) + 1)
- Guess T'(n) < logn.

|Substitution Method: Example 1

T(n) = T(|n/2])+1
e Count number of bits (T'(n) = T(|n/2]) + 1) < log(|n/2])+1
< log(n/2)+1
< (logn —log2)+1
< logn—1+1
= logn

. J . J
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| Substitution Method: Example 2

e Tower of Hanoi (T'(n) = 2T (n — 1) + 1)

| Substitution Method: Example 2 — Guess 1'(n) < 2".
e Tower of Hanoi (T'(n) =2T(n— 1)+ 1)
) ( ) T(n) = 2T'n—1)+1
< 2.2l 4
< 2"+1, wrong
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| Substitution Method: Extension F,

- Guess T'(n) < 2",

e Tower of Hanoi (T'(n) = 2T (n — 1) + 1)

T(n) = 2T(n—1)+1
< 2.2t
< 2" 41, wrong!
- GuessT'(n) < 2" —1,
CS483 Design and Analysis of Algorithms 13 Lecture 05, September 11, 2007

T(n) = 2T(n—1)+1
< 202"t —1) 41
= 2" -2+1
= 2" —1, correct!
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Substitution Method: Extension [,

Substitution Method: Extension F),

e Fibonacci Numbers (Fy =0, Fy =1, F, = F,,_1 + F,,_9)

\_
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o F, o< Fh_1<F,,Vn>1

\_

Fibonacci Numbers (Fp =0, Fy = 1, F,, =

n—1+t Fn—2)

J
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Substitution Method: Extension £,

Fibonacci Numbers (Fyp =0, Fy =1, F, = Fj,_1 + F},_9)
e Fy o< Fph_1<F,,Vn>1
e Assume 2" < F, < 2"

e Guess [, = c- 9", 1 < ¢ < 2.
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-

Substitution Method: Extension 7,

Fibonacci Numbers (Fy =0, Fy =1, F, = Fj,_1 + F},_9)
o I o< Fy_y <Fn7vn2 1
e Assume 2"l < F,, < 2"

e Guess [, = c- 9", 1 < ¢ < 2.

J

c.d)n _ C'¢n71+6'¢n72
¢ = ¢+1
5 1+5
B 2
General solution: Fj, =c¢1 - ¢7 + ca - @5
Fi=0F=1
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General solution: F,, =c¢1 - ¢F + ca - @5

F=0FK=1
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Summary: Algorithm Analysis

= Order of growth of functions

> Analyze algorithms’ order of growth (using asymptotic notations).
e Non-recursive algorithms
e Recursive algorithms
a. The iteration method

b. The substitution method
c. Master Theorem (to be introduced) (T'(n) = aT'(n/b) + f(n).)
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B Analysis of Recursive Algorithms

> Brute Force
e |deas
e Examples: Selection Sort & Bubble Sort
e Examples: String Matching

e Examples: Exhaustive Search

\_
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Brute Force — Ideas I

based on the problem statement and definitions of the concepts involved.

\_

= Brute force is a straightforward approach to solve a problem, usually directly

J
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B Analysis of Recursive Algorithms

B Brute Force
e |deas
e Examples: Selection Sort & Bubble Sort
e Examples: String Matching

o Examples: Exhaustive Search
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Selection Sort & Bubble Sort

= Given n orderable items, sort them in non-decreasing order.
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Selection Sort

B Given 1 orderable items, sort them in non-decreasing order.

= Input: An array A[0, ..., n — 1] of orderable elements.

Algorithm 0.2: SELECTIONSORT(AO, - - -1 — 1))

fort =0ton — 2

min =4
forj=¢+1ton—1
do if A[j] < A[min]

do
then min = j

Swap A[i] and A[min]

\_

B Output: An array A[O, ce,n = 1] sorted in non-decreasing order.

J
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Selection Sort

Analysis
® |nput size: n.
e Basic operation: A[j] < A[min]

® Running time:

C(n) = z_: z_: 1

i=0 j=i+1
n—2 n—2

= D n-1)-(@-1)+1]=> (n—1-1)
1=0 =0

~ (n=1D)n

B 2

= 0(n?
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Bubble Sort

B Given n orderable items, sort them in non-decreasing order.
= Input: An array A[0, ..., n — 1] of orderable elements.

B Output: An array A[O7 ce,n— 1] sorted in non-decreasing order.

Algorithm 0.3: BuBsLESORT(A[O, - --n — 1])

fort =0ton —2
forj=0ton—2—1
do ] it Alj + 1] < A[j]
then Swap A[j] and A[j + 1]

\_
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Bubble Sort

Analysis
e |nput size: n.
e Basic operation: A[j + 1] < A[j]

® Running time:

C(n) = Z i'l

CS483

i=0 =0
n—2 n—2
= [(n—2—z)—0+1]=2(n—1—z)
=0 =0
~ (n—=1Dn
N 2
= 0(n?
/
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e Examples: String Matching
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| String Matching

= Given a string of n characters called the text; and a string of m characters
called the pattern, find a substring of the text that matches the pattern.

= Input: An array T'[0, . .., n — 1] of n characters representing a text

Anarray P[0, ..., m] characters representing a pattern

= OQutput: The index of the first character in the text that starts a matching
substring or —1 if the search is unsuccessful

= Example: Pattern: 001011 Text: 10010101101001100101111010

Pattern: happy Text: It is never too late to have a happy childhood.

\_
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| String Matching

fort =0ton —m
7=0
while j < mand P[j] = T[i + j]
do doj=7+1
ifj=m

then return (7)

return (—1)

\_

Algorithm 0.4: STrRiNGMATCHING(T'[O0, - - - — 1], P[0, . ..

,m —1])

J
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String Matching

Analysis
e Input size: 1 + m.
e Basic operation: P[j] = T[i + j]

® Running time (worst-case):

Cn+m)=mn—-m+1) -m=0(nm)
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e Examples: Exhaustive Search
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Traveling Salesman Problem

> TSP: Find the shortest tour through a given set of 1 cities that visits each city
exactly once before returning to the city where it starts.

2
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Tour

Cost

a—b—c—d—a
a—b—-d—c—a
a—c—b—d—a
a—c—d—b—a
a—d—b—c—a

a—d—c—b—a

24+3+7+5=17
24+44+7+8=21
8+3+4+5=20
8+7+4+2=21
5+4+34+8=20
S+T7T+3+2=17
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| Traveling Salesman Problem

Analysis
e Inputsize: n - (n — 1).

® Running time:

C(n)=(n—1)1/2.
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Knapsack Problem
= Knapsack Problem: Given n objects, each object 7 has weight w, and value
v;, and a knapsack of capacity W/, find most valuable items that fit into the
knapsack Example: Knapsack capacity W = 16
Items are not splittable )
Item Weight Value
gl ) 5 530
3 10 $50
ﬁ?ﬁ' 4 5 $10
CS483 Design and Analysis of Algorithms 37 Lecture 05, September 11, 2007 CS483 Design and Analysis of Algorithms 38 Lecture 05, September 11, 2007
Subset Total weight Total value
{1} 2 $20
{2} 5 $30
{3} 10 $50 Knapsack Problem
{4} 5 $10
Analysi
{1,2} 7 $50 nalysis
{1,3} 12 370 ® Input size: n (items).
{1,4} 7 $30 o
® Running time:
{2,3} 15 $80
2,4} 10 $40 The number of subsets of an n-element set is 2".
{3,4} 15 $60
{1,2,3} 17 not feasible c Q2"
n) = .
{1,2,4} 12 $60 ( ) ( )
{1,3,4} 17 not feasible
{2,3,4} 20 not feasible
{1,2,3,4} 22 not feasible
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Assignment Problem

Find the assignment with the minimum total cost.

> Assignment Problem: There are n people to execute n jobs, one person per
job. If ith person is assigned the jth job, the costis C'[é, j|, 4,5 = 1,...,n.

Job 1 Job 2 ‘ Job 3 ‘ Job 4
Person 1 9 2 7 8
Person 2 6 4 3 7
Person 3 5 8 1 8
Person 4 7 6 9 4
. J
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Assignment Problem

Analysis
® |nput size: n.

® Running time:

\_
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Summary for Brute Force

= Strengths
1. Wide applicability
2. Simplicity
3. Yields reasonable algorithms for some important problems (e.g., matrix
multiplication, sorting, searching, string matching)
= Weaknesses
1. Rarely yields efficient algorithms
2. Some brute-force algorithms are unacceptably slow

3. Not as constructive as some other design techniques

\_
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Summary for Brute Force

> Exhaustive-search algorithms run in a realistic amount of time only on very
small instances
= In some cases, there are much better alternatives
e Shortest paths (greedy)
& Minimum spanning tree (greedy)
e Assignment problem (iterative improvement)

= In many cases, exhaustive search or its variation is the only known way to get

exact solution
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Summary I

= Next class: Chap. 4 and Master Theorem.

> Read Chap. 3.
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