
CS483-05 Analysis of Recursive Algorithms and Brute

Force

Instructor: Fei Li

Room 443 ST II

Office hours: Tue. & Thur. 4:30pm - 5:30pm or by appointments

lifei@cs.gmu.edu with subject: CS483

http://www.cs.gmu.edu/∼ lifei/teaching/cs483_fall07/

This lecture note is based on Introduction to The Design and Analysis of Algorithms by Anany Levitin.

CS483 Design and Analysis of Algorithms 1 Lecture 05, September 11, 2007

Example 4: Counting Binary Bits

� Input: A positive decimal integer n.

� Output: The number of binary digits in n’s binary representation.

Algorithm 0.1: COUNTBINARYBITS(n)

count = 1

while n > 1

do

⎧⎨
⎩

count = count + 1

n = �n/2�
return (count)

CS483 Design and Analysis of Algorithms 2 Lecture 05, September 11, 2007

Outline

➣ Analysis of Recursive Algorithms

➣ Brute Force

� Ideas

� Examples: Selection Sort & Bubble Sort

� Examples: String Matching

� Examples: Exhaustive Search

CS483 Design and Analysis of Algorithms 3 Lecture 05, September 11, 2007

Analysis of Recursive Algorithms

➣ The iteration method

� Expand (iterate) the recurrence and express it as a summation of terms

depending only on n and the initial conditions.

➣ The substitution method

➣ Master Theorem

(To be introduced in Chapter 4.)

CS483 Design and Analysis of Algorithms 4 Lecture 05, September 11, 2007

Iteration Method: Examples

� n!

T (n) = T (n − 1) + 1

� Tower of Hanoi

T (n) = 2T (n − 1) + 1

CS483 Design and Analysis of Algorithms 5 Lecture 05, September 11, 2007

Iteration: Example

� n! (T (n) = T (n − 1) + 1)

T (n) = T (n − 1) + 1

= (T (n − 2) + 1) + 1

= T (n − 2) + 2

· · · · · ·
= T (n − i) + i

· · · · · ·
= T (0) + n = n

� Tower of Hanoi (T (n) = 2T (n − 1) + 1) ???

CS483 Design and Analysis of Algorithms 6 Lecture 05, September 11, 2007

Tower of Hanoi (T (n) = 2T (n − 1) + 1)

T (n) = 2T (n − 1) + 1

= 2(2T (n − 2) + 1) + 1

= 22T (n − 2) + 2 + 1

· · · · · ·
= 2iT (n − i) + 2i−1 + · · · + 1

· · · · · ·
= 2n−1T (1) + 2n−1 + 2n−1 + · · · + 1

= 2n−1T (1) +
n−2∑
i=0

2i

= 2n−1 + 2n−1 − 1

= 2n − 1

CS483 Design and Analysis of Algorithms 7 Lecture 05, September 11, 2007

Analysis of Recursive Algorithms

➣ The iteration method

� Expand (iterate) the recurrence and express it as a summation of terms

depending only on n and the initial conditions.

➣ The substitution method

1. Guess the form of the solution

2. Use mathematical induction to find the constants

➣ Master Theorem

CS483 Design and Analysis of Algorithms 8 Lecture 05, September 11, 2007

Substitution Method: Example 1

� Count number of bits (T (n) = T (�n/2�) + 1)

CS483 Design and Analysis of Algorithms 9 Lecture 05, September 11, 2007

Substitution Method: Example 1

� Count number of bits (T (n) = T (�n/2�) + 1)

– Guess T (n) ≤ log n.

T (n) = T (�n/2�) + 1

≤ log(�n/2�) + 1

≤ log(n/2) + 1

≤ (log n − log 2) + 1

≤ log n − 1 + 1

= log n

CS483 Design and Analysis of Algorithms 10 Lecture 05, September 11, 2007

Substitution Method: Example 2

� Tower of Hanoi (T (n) = 2T (n − 1) + 1)

CS483 Design and Analysis of Algorithms 11 Lecture 05, September 11, 2007

Substitution Method: Example 2

� Tower of Hanoi (T (n) = 2T (n − 1) + 1)

– Guess T (n) ≤ 2n.

T (n) = 2T (n − 1) + 1

≤ 2 · 2n−1 + 1

≤ 2n + 1, wrong!

CS483 Design and Analysis of Algorithms 12 Lecture 05, September 11, 2007

Substitution Method: Extension Fn

� Tower of Hanoi (T (n) = 2T (n − 1) + 1)

– Guess T (n) ≤ 2n.

T (n) = 2T (n − 1) + 1

≤ 2 · 2n−1 + 1

≤ 2n + 1, wrong!

– Guess T (n) ≤ 2n − 1.

CS483 Design and Analysis of Algorithms 13 Lecture 05, September 11, 2007

T (n) = 2T (n − 1) + 1

≤ 2(2n−1 − 1) + 1

= 2n − 2 + 1

= 2n − 1, correct!

CS483 Design and Analysis of Algorithms 14 Lecture 05, September 11, 2007

Substitution Method: Extension Fn

� Fibonacci Numbers (F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2)

CS483 Design and Analysis of Algorithms 15 Lecture 05, September 11, 2007

Substitution Method: Extension Fn

Fibonacci Numbers (F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2)

� Fn−2 < Fn−1 < Fn, ∀n ≥ 1

CS483 Design and Analysis of Algorithms 16 Lecture 05, September 11, 2007

Substitution Method: Extension Fn

Fibonacci Numbers (F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2)

� Fn−2 < Fn−1 < Fn, ∀n ≥ 1

� Assume 2n−1 < Fn < 2n

� Guess Fn = c · φn, 1 < φ < 2.

CS483 Design and Analysis of Algorithms 17 Lecture 05, September 11, 2007

Substitution Method: Extension Fn

Fibonacci Numbers (F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2)

� Fn−2 < Fn−1 < Fn, ∀n ≥ 1

� Assume 2n−1 < Fn < 2n

� Guess Fn = c · φn, 1 < φ < 2.

c · φn = c · φn−1 + c · φn−2

φ2 = φ + 1

φ =
1 ±√

5

2

General solution: Fn = c1 · φn
1 + c2 · φn

2

F1 = 0, F2 = 1

CS483 Design and Analysis of Algorithms 18 Lecture 05, September 11, 2007

General solution: Fn = c1 · φn
1 + c2 · φn

2

F1 = 0, F2 = 1

Fn =
1√
5
(
1 +

√
5

2
)n − 1√

5
(
1 −√

5

2
)n

CS483 Design and Analysis of Algorithms 19 Lecture 05, September 11, 2007

Summary: Algorithm Analysis

➣ Order of growth of functions

➣ Analyze algorithms’ order of growth (using asymptotic notations).

� Non-recursive algorithms

� Recursive algorithms

a. The iteration method

b. The substitution method

c. Master Theorem (to be introduced) (T (n) = aT (n/b) + f(n).)

CS483 Design and Analysis of Algorithms 20 Lecture 05, September 11, 2007

Outline

➣ Analysis of Recursive Algorithms

➣ Brute Force

� Ideas

� Examples: Selection Sort & Bubble Sort

� Examples: String Matching

� Examples: Exhaustive Search

CS483 Design and Analysis of Algorithms 21 Lecture 05, September 11, 2007

Brute Force — Ideas

➣ Brute force is a straightforward approach to solve a problem, usually directly

based on the problem statement and definitions of the concepts involved.

CS483 Design and Analysis of Algorithms 22 Lecture 05, September 11, 2007

Outline

➣ Analysis of Recursive Algorithms

➣ Brute Force

� Ideas

� Examples: Selection Sort & Bubble Sort

� Examples: String Matching

� Examples: Exhaustive Search

CS483 Design and Analysis of Algorithms 23 Lecture 05, September 11, 2007

Selection Sort & Bubble Sort

➣ Given n orderable items, sort them in non-decreasing order.

CS483 Design and Analysis of Algorithms 24 Lecture 05, September 11, 2007

Selection Sort

➣ Given n orderable items, sort them in non-decreasing order.

➣ Input: An array A[0, . . . , n − 1] of orderable elements.

➣ Output: An array A[0, . . . , n − 1] sorted in non-decreasing order.

Algorithm 0.2: SELECTIONSORT(A[0, · · ·n − 1])

for i = 0 to n − 2

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min = i

for j = i + 1 to n − 1

do

⎧⎨
⎩

if A[j] < A[min]

then min = j

Swap A[i] and A[min]

CS483 Design and Analysis of Algorithms 25 Lecture 05, September 11, 2007

Selection Sort

Analysis

� Input size: n.

� Basic operation: A[j] < A[min]

� Running time:

C(n) =

n−2∑
i=0

n−1∑
j=i+1

1

=
n−2∑
i=0

[(n − 1) − (i − 1) + 1] =
n−2∑
i=0

(n − 1 − i)

=
(n − 1)n

2

= Θ(n2)

CS483 Design and Analysis of Algorithms 26 Lecture 05, September 11, 2007

Bubble Sort

➣ Given n orderable items, sort them in non-decreasing order.

➣ Input: An array A[0, . . . , n − 1] of orderable elements.

➣ Output: An array A[0, . . . , n − 1] sorted in non-decreasing order.

Algorithm 0.3: BUBBLESORT(A[0, · · ·n − 1])

for i = 0 to n − 2

do

⎧⎪⎪⎨
⎪⎪⎩

for j = 0 to n − 2 − i

do

⎧⎨
⎩

if A[j + 1] < A[j]

then Swap A[j] and A[j + 1]

CS483 Design and Analysis of Algorithms 27 Lecture 05, September 11, 2007

Bubble Sort

Analysis

� Input size: n.

� Basic operation: A[j + 1] < A[j]

� Running time:

C(n) =
n−2∑
i=0

n−2−i∑
j=0

1

=
n−2∑
i=0

[(n − 2 − i) − 0 + 1] =
n−2∑
i=0

(n − 1 − i)

=
(n − 1)n

2

= Θ(n2)

CS483 Design and Analysis of Algorithms 28 Lecture 05, September 11, 2007

Outline

➣ Analysis of Recursive Algorithms

➣ Brute Force

� Ideas

� Examples: Selection Sort & Bubble Sort

� Examples: String Matching

� Examples: Exhaustive Search

CS483 Design and Analysis of Algorithms 29 Lecture 05, September 11, 2007

String Matching

➣ Given a string of n characters called the text; and a string of m characters

called the pattern, find a substring of the text that matches the pattern.

➣ Input: An array T [0, . . . , n − 1] of n characters representing a text

An array P [0, . . . , m] characters representing a pattern

➣ Output: The index of the first character in the text that starts a matching

substring or −1 if the search is unsuccessful

➣ Example: Pattern: 001011 Text: 10010101101001100101111010

Pattern: happy Text: It is never too late to have a happy childhood.

CS483 Design and Analysis of Algorithms 30 Lecture 05, September 11, 2007

String Matching

Algorithm 0.4: STRINGMATCHING(T [0, · · ·n − 1], P [0, . . . , m − 1])

for i = 0 to n − m

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

j = 0⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

while j < m and P [j] = T [i + j]

do j = j + 1

if j = m

then return (i)

return (−1)

CS483 Design and Analysis of Algorithms 31 Lecture 05, September 11, 2007

String Matching

Analysis

� Input size: n + m.

� Basic operation: P [j] = T [i + j]

� Running time (worst-case):

C(n + m) = (n − m + 1) · m = Θ(nm)

CS483 Design and Analysis of Algorithms 32 Lecture 05, September 11, 2007

Outline

➣ Analysis of Recursive Algorithms

➣ Brute Force

� Ideas

� Examples: Selection Sort & Bubble Sort

� Examples: String Matching

� Examples: Exhaustive Search

CS483 Design and Analysis of Algorithms 33 Lecture 05, September 11, 2007

Traveling Salesman Problem

➣ TSP: Find the shortest tour through a given set of n cities that visits each city

exactly once before returning to the city where it starts.

1

2

3
5 7

8

a b

c d

CS483 Design and Analysis of Algorithms 34 Lecture 05, September 11, 2007

1

2

35 78

a b

c d

Tour Cost

a → b → c → d → a 2 + 3 + 7 + 5 = 17

a → b → d → c → a 2 + 4 + 7 + 8 = 21

a → c → b → d → a 8 + 3 + 4 + 5 = 20

a → c → d → b → a 8 + 7 + 4 + 2 = 21

a → d → b → c → a 5 + 4 + 3 + 8 = 20

a → d → c → b → a 5 + 7 + 3 + 2 = 17

CS483 Design and Analysis of Algorithms 35 Lecture 05, September 11, 2007

Traveling Salesman Problem

Analysis

� Input size: n · (n − 1).

� Running time:

C(n) = (n − 1)!/2.

CS483 Design and Analysis of Algorithms 36 Lecture 05, September 11, 2007

Knapsack Problem

➣ Knapsack Problem: Given n objects, each object i has weight wi and value

vi, and a knapsack of capacity W , find most valuable items that fit into the

knapsack

Items are not splittable

CS483 Design and Analysis of Algorithms 37 Lecture 05, September 11, 2007

Example: Knapsack capacity W = 16

Item Weight Value

1 2 $20

2 5 $30

3 10 $50

4 5 $10

CS483 Design and Analysis of Algorithms 38 Lecture 05, September 11, 2007

Subset Total weight Total value

{1} 2 $20

{2} 5 $30

{3} 10 $50

{4} 5 $10

{1, 2} 7 $50

{1, 3} 12 $70

{1, 4} 7 $30

{2, 3} 15 $80

{2, 4} 10 $40

{3, 4} 15 $60

{1, 2, 3} 17 not feasible

{1, 2, 4} 12 $60

{1, 3, 4} 17 not feasible

{2, 3, 4} 20 not feasible

{1, 2, 3, 4} 22 not feasible

CS483 Design and Analysis of Algorithms 39 Lecture 05, September 11, 2007

Knapsack Problem

Analysis

� Input size: n (items).

� Running time:

The number of subsets of an n-element set is 2n.

C(n) = Ω(2n).

CS483 Design and Analysis of Algorithms 40 Lecture 05, September 11, 2007

Assignment Problem

➣ Assignment Problem: There are n people to execute n jobs, one person per

job. If ith person is assigned the jth job, the cost is C[i, j], i, j = 1, . . . , n.

Find the assignment with the minimum total cost.

Job 1 Job 2 Job 3 Job 4

Person 1 9 2 7 8

Person 2 6 4 3 7

Person 3 5 8 1 8

Person 4 7 6 9 4

CS483 Design and Analysis of Algorithms 41 Lecture 05, September 11, 2007

Assignment Problem

Analysis

� Input size: n.

� Running time:

C(n) = n!.

CS483 Design and Analysis of Algorithms 42 Lecture 05, September 11, 2007

Summary for Brute Force

➣ Strengths

1. Wide applicability

2. Simplicity

3. Yields reasonable algorithms for some important problems (e.g., matrix

multiplication, sorting, searching, string matching)

➣ Weaknesses

1. Rarely yields efficient algorithms

2. Some brute-force algorithms are unacceptably slow

3. Not as constructive as some other design techniques

CS483 Design and Analysis of Algorithms 43 Lecture 05, September 11, 2007

Summary for Brute Force

➣ Exhaustive-search algorithms run in a realistic amount of time only on very

small instances

➣ In some cases, there are much better alternatives

� Shortest paths (greedy)

� Minimum spanning tree (greedy)

� Assignment problem (iterative improvement)

➣ In many cases, exhaustive search or its variation is the only known way to get

exact solution

CS483 Design and Analysis of Algorithms 44 Lecture 05, September 11, 2007

Summary

➣ Read Chap. 3.

➣ Next class: Chap. 4 and Master Theorem.

CS483 Design and Analysis of Algorithms 45 Lecture 05, September 11, 2007

