CS483-05 Analysis of Recursive Algorithms and Brute

- Input: A positive decimal integer n.

Force

- Output: The number of binary digits in n 's binary representation.

Algorithm 0.1: CountBinaryBits(n)
count $=1$
Instructor: Fei Li
while $n>1$

Room 443 ST II

Office hours: Tue. \& Thur. 4:30pm - 5:30pm or by appointments
do $\left\{\begin{array}{l}\text { count }=\text { count }+1 \\ n=\lfloor n / 2\rfloor\end{array}\right.$
lifei@cs.gmu.edu with subject: CS483
return (count)
http://www.cs.gmu.edu/~ lifei/teaching/cs483_fall07/
This lecture note is based on Introduction to The Design and Analysis of Algorithms by Anany Levitin.
CS483 Design and Analysis of Algorithms

Analysis of Recursive Algorithms

- Analysis of Recursive Algorithms
\wedge The iteration method
\star Brute Force
- Expand (iterate) the recurrence and express it as a summation of terms
- Ideas depending only on n and the initial conditions
- Examples: Selection Sort \& Bubble Sort
$\boldsymbol{\text { The substitution method }}$
- Examples: String Matching
- Master Theorem
- Examples: Exhaustive Search
(To be introduced in Chapter 4.)
Iteration Method: Examples
- n !

$$
T(n)=T(n-1)+1
$$

- Tower of Hanoi

$$
T(n)=2 T(n-1)+1
$$

Tower of Hanoi $(T(n)=2 T(n-1)+1)$

$$
\begin{aligned}
T(n)= & 2 T(n-1)+1 \\
= & 2(2 T(n-2)+1)+1 \\
= & 2^{2} T(n-2)+2+1 \\
& \cdots \\
= & 2^{i} T(n-i)+2^{i-1}+\cdots+1 \\
& \cdots \\
= & 2^{n-1} T(1)+2^{n-1}+2^{n-1}+\cdots+1 \\
= & 2^{n-1} T(1)+\sum_{i=0}^{n-2} 2^{i} \\
= & 2^{n-1}+2^{n-1}-1 \\
= & 2^{n}-1
\end{aligned}
$$

Analysis of Recursive Algorithms

\star The iteration method

- Expand (iterate) the recurrence and express it as a summation of terms depending only on n and the initial conditions.
- The substitution method

1. Guess the form of the solution
2. Use mathematical induction to find the constants

- Master Theorem
- Count number of bits $(T(n)=T(\lfloor n / 2\rfloor)+1)$
- Count number of bits $(T(n)=T(\lfloor n / 2\rfloor)+1)$
- Guess $T(n) \leq \log n$.

```Substitution Method: Example 1```
 Substitution Method: Example 1

$$
\begin{aligned}
T(n) & =T(\lfloor n / 2\rfloor)+1 \\
& \leq \log (\lfloor n / 2\rfloor)+1 \\
& \leq \log (n / 2)+1 \\
& \leq(\log n-\log 2)+1 \\
& \leq \log n-1+1 \\
& =\log n
\end{aligned}
$$

Substitution Method: Example 2

- Tower of Hanoi $(T(n)=2 T(n-1)+1)$
- Guess $T(n) \leq 2^{n}$.
- Tower of Hanoi $(T(n)=2 T(n-1)+1)$

$$
\begin{aligned}
T(n) & =2 T(n-1)+1 \\
& \leq 2 \cdot 2^{n-1}+1 \\
& \leq 2^{n}+1, \quad \text { wrong! }
\end{aligned}
$$

```
Substitution Method: Extension }\mp@subsup{F}{n}{
```

- Tower of Hanoi $(T(n)=2 T(n-1)+1)$
- Guess $T(n) \leq 2^{n}$.

$$
\begin{aligned}
T(n) & =2 T(n-1)+1 \\
& \leq 2 \cdot 2^{n-1}+1 \\
& \leq 2^{n}+1, \quad \text { wrong! }
\end{aligned}
$$

- Guess $T(n) \leq 2^{n}-1$.

Substitution Method: Extension F_{n}
Fibonacci Numbers ($F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$)

- $F_{n-2}<F_{n-1}<F_{n}, \forall n \geq 1$

Substitution Method: Extension F_{n}

Substitution Method: Extension F_{n}

Fibonacci Numbers ($F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$)

- $F_{n-2}<F_{n-1}<F_{n}, \forall n \geq 1$
- Assume $2^{n-1}<F_{n}<2^{n}$
- Guess $F_{n}=c \cdot \phi^{n}, 1<\phi<2$.

Fibonacci Numbers ($F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$)

- $F_{n-2}<F_{n-1}<F_{n}, \forall n \geq 1$
- Assume $2^{n-1}<F_{n}<2^{n}$
- Guess $F_{n}=c \cdot \phi^{n}, 1<\phi<2$.

$$
\begin{aligned}
c \cdot \phi^{n} & =c \cdot \phi^{n-1}+c \cdot \phi^{n-2} \\
\phi^{2} & =\phi+1 \\
\phi & =\frac{1 \pm \sqrt{5}}{2}
\end{aligned}
$$

General solution: $F_{n}=c_{1} \cdot \phi_{1}^{n}+c_{2} \cdot \phi_{2}^{n}$
$F_{1}=0, F_{2}=1$
Summary: Algorithm Analysis

General solution: $F_{n}=c_{1} \cdot \phi_{1}^{n}+c_{2} \cdot \phi_{2}^{n}$

- Order of growth of functions
$F_{1}=0, F_{2}=1$
- Analyze algorithms' order of growth (using asymptotic notations).
- Non-recursive algorithms
- Recursive algorithms
a. The iteration method
b. The substitution method
c. Master Theorem (to be introduced) $(T(n)=a T(n / b)+f(n)$.)

Outline

- Analysis of Recursive Algorithms
* Brute Force
- Ideas
- Brute force is a straightforward approach to solve a problem, usually directly based on the problem statement and definitions of the concepts involved.
- Examples: Selection Sort \& Bubble Sort
- Examples: String Matching
- Examples: Exhaustive Search

CS483 Design and Analysis of Algorithms

Selection Sort

- Given n orderable items, sort them in non-decreasing order.

Analysis
\star Input: An array $A[0, \ldots, n-1]$ of orderable elements.

- Input size: n.
- Basic operation: $A[j]<A[\min]$
\star Output: An array $A[0, \ldots, n-1]$ sorted in non-decreasing order.
- Running time:

Algorithm 0.2: $\operatorname{SELECTIONSORT}(A[0, \cdots n-1])$
for $i=0$ to $n-2$
do $\left\{\begin{aligned} \min =i \\ \text { for } j=i+1 \text { to } n-1 \\ \text { do }\left\{\begin{array}{c}\text { if } A[j]<A[\min] \\ \text { then } \min =j\end{array}\right. \\ \operatorname{Swap} A[i] \text { and } A[\min]\end{aligned}\right.$

$$
\begin{aligned}
C(n) & =\sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 \\
& =\sum_{i=0}^{n-2}[(n-1)-(i-1)+1]=\sum_{i=0}^{n-2}(n-1-i) \\
& =\frac{(n-1) n}{2} \\
& =\Theta\left(n^{2}\right)
\end{aligned}
$$

Bubble Sort

Analysis

- Input size: n.
- Basic operation: $A[j+1]<A[j]$
- Running time:

$$
\begin{aligned}
C(n) & =\sum_{i=0}^{n-2} \sum_{j=0}^{n-2-i} 1 \\
& =\sum_{i=0}^{n-2}[(n-2-i)-0+1]=\sum_{i=0}^{n-2}(n-1-i) \\
& =\frac{(n-1) n}{2} \\
& =\Theta\left(n^{2}\right)
\end{aligned}
$$

Outline

String Matching

- Analysis of Recursive Algorithms
- Given a string of n characters called the text; and a string of m characters
- Brute Force called the pattern, find a substring of the text that matches the pattern.
- Input: An array $T[0, \ldots, n-1]$ of n characters representing a text An array $P[0, \ldots, m]$ characters representing a pattern
- Examples: Selection Sort \& Bubble Sort
- Output: The index of the first character in the text that starts a matching
- Examples: String Matching substring or -1 if the search is unsuccessful
- Examples: Exhaustive Search
- Example: Pattern: 001011 Text: 10010101101001100101111010

Pattern: happy Text: It is never too late to have a happy childhood.

String Matching

Algorithm 0.4: StringMatching $(T[0, \cdots n-1], P[0, \ldots, m-1])$
Analysis
for $i=0$ to $n-m$

- Input size: $n+m$.
do $\left\{\begin{array}{l}j=0 \\ \left\{\begin{array}{l}\text { while } j<m \text { and } P[j]=T[i+j] \\ \text { do } j=j+1 \\ \text { if } j=m \\ \text { then return }(i)\end{array}\right. \\ \text { return }(-1)\end{array}\right.$

Outline

- TSP: Find the shortest tour through a given set of n cities that visits each city exactly once before returning to the city where it starts.
\star Analysis of Recursive Algorithms
* Brute Force
- Ideas
- Examples: Selection Sort \& Bubble Sort
- Examples: String Matching
- Examples: Exhaustive Search

Traveling Salesman Problem

Analysis

Tour	Cost
$a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$	$2+3+7+5=17$
$a \rightarrow b \rightarrow d \rightarrow c \rightarrow a$	$2+4+7+8=21$
$a \rightarrow c \rightarrow b \rightarrow d \rightarrow a$	$8+3+4+5=20$
$a \rightarrow c \rightarrow d \rightarrow b \rightarrow a$	$8+7+4+2=21$
$a \rightarrow d \rightarrow b \rightarrow c \rightarrow a$	$5+4+3+8=20$
$a \rightarrow d \rightarrow c \rightarrow b \rightarrow a$	$5+7+3+2=17$

$C(n)=(n-1)!/ 2$.

- Knapsack Problem: Given n objects, each object i has weight w_{i} and value
v_{i}, and a knapsack of capacity W, find most valuable items that fit into the
knapsack
Items are not splittable

Item	Weight	Value
1	2	$\$ 20$
2	5	$\$ 30$
3	10	$\$ 50$
4	5	$\$ 10$

Subset	Total weight	Total value
$\{1\}$	2	$\$ 20$
$\{2\}$	5	$\$ 30$
$\{3\}$	10	$\$ 50$
$\{4\}$	5	$\$ 10$
$\{1,2\}$	7	$\$ 50$
$\{1,3\}$	12	$\$ 70$
$\{1,4\}$	7	$\$ 30$
$\{2,3\}$	15	$\$ 80$
$\{2,4\}$	10	$\$ 40$
$\{3,4\}$	15	$\$ 60$
$\{1,2,3\}$	17	not feasible
$\{1,2,4\}$	12	$\$ 60$
$\{1,3,4\}$	17	not feasible
$\{2,3,4\}$	20	not feasible
$\{1,2,3,4\}$		not feasible

- Assignment Problem: There are n people to execute n jobs, one person per job. If i th person is assigned the j th job, the cost is $C[i, j], i, j=1, \ldots, n$.

Find the assignment with the minimum total cost.

	Job 1	Job 2	Job 3	Job 4
Person 1	9	2	7	8
Person 2	6	4	3	7
Person 3	5	8	1	8
Person 4	7	6	9	4

Analysis

- Input size: n.
- Running time:

$$
C(n)=n!
$$

CS483 Design and Analysis of Algorithms

Summary for Brute Force

- Strengths

1. Wide applicability

- Exhaustive-search algorithms run in a realistic amount of time only on very small instances

2. Simplicity
\& In some cases, there are much better alternatives
3. Yields reasonable algorithms for some important problems (e.g., matrix

- Shortest paths (greedy) multiplication, sorting, searching, string matching)
\wedge Weaknesses
- Minimum spanning tree (greedy)

1. Rarely yields efficient algorithms
2. Some brute-force algorithms are unacceptably slow

- In many cases, exhaustive search or its variation is the only known way to get exact solution

3. Not as constructive as some other design techniques

- Read Chap. 3
- Next class: Chap. 4 and Master Theorem.

