

Example 4: Counting Binary Bits

- Input: A positive decimal integer *n*.
- Output: The number of binary digits in n's binary representation.

Algorithm 0.1: COUNTBINARYBITS(*n*)

```
\begin{array}{l} count = 1 \\ \mbox{while } n > 1 \\ \mbox{do } \begin{cases} count = count + 1 \\ n = \lfloor n/2 \rfloor \\ \mbox{return } (count) \end{array}
```

Outline

Analysis of Recursive Algorithms

➤ Brute Force

• Ideas

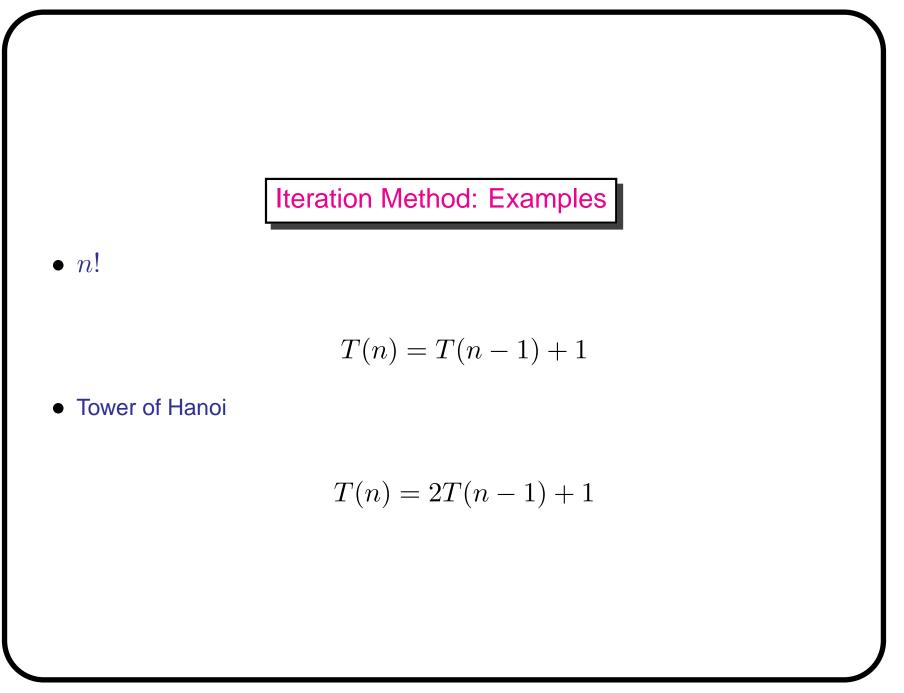
- Examples: Selection Sort & Bubble Sort
- Examples: String Matching
- Examples: Exhaustive Search

Analysis of Recursive Algorithms

\succ The iteration method

- Expand (iterate) the recurrence and express it as a summation of terms depending only on *n* and the initial conditions.
- The substitution method
- Master Theorem

(To be introduced in Chapter 4.)



Iteration: Example

•
$$n! (T(n) = T(n-1) + 1)$$

$$T(n) = T(n-1) + 1$$

= $(T(n-2) + 1) + 1$
= $T(n-2) + 2$
....
= $T(n-i) + i$
....
= $T(0) + n = n$

• Tower of Hanoi (T(n) = 2T(n-1) + 1) ???

Tower of Hanoi (T(n) = 2T(n-1) + 1) T(n) = 2T(n-1) + 1= 2(2T(n-2)+1)+1 $= 2^2 T(n-2) + 2 + 1$ $= 2^{i}T(n-i) + 2^{i-1} + \dots + 1$ $= 2^{n-1}T(1) + 2^{n-1} + 2^{n-1} + \dots + 1$ $= 2^{n-1}T(1) + \sum_{i=0}^{n-2} 2^i$ $= 2^{n-1} + 2^{n-1} - 1$ $= 2^n - 1$

Analysis of Recursive Algorithms

- The iteration method
 - Expand (iterate) the recurrence and express it as a summation of terms depending only on *n* and the initial conditions.
- The substitution method
 - 1. Guess the form of the solution
 - 2. Use mathematical induction to find the constants
- Master Theorem

Substitution Method: Example 1

• Count number of bits ($T(n) = T(\lfloor n/2 \rfloor) + 1$)

Substitution Method: Example 1

- Count number of bits ($T(n) = T(\lfloor n/2 \rfloor) + 1$)
 - Guess $T(n) \leq \log n$.

$$T(n) = T(\lfloor n/2 \rfloor) + 1$$

$$\leq \log(\lfloor n/2 \rfloor) + 1$$

$$\leq \log(n/2) + 1$$

$$\leq (\log n - \log 2) + 1$$

$$\leq \log n - 1 + 1$$

$$= \log n$$

Substitution Method: Example $2\,$

• Tower of Hanoi (T(n) = 2T(n-1) + 1)

Substitution Method: Example $2\,$

• Tower of Hanoi (T(n) = 2T(n-1) + 1)

– Guess
$$T(n) \leq 2^n$$

$$T(n) = 2T(n-1) + 1$$

$$\leq 2 \cdot 2^{n-1} + 1$$

$$\leq 2^n + 1, \text{ wrong!}$$

• Tower of Hanoi (T(n) = 2T(n-1) + 1) - Guess $T(n) \le 2^n$.

$$T(n) = 2T(n-1) + 1$$

$$\leq 2 \cdot 2^{n-1} + 1$$

$$\leq 2^n + 1, \text{ wrong!}$$

– Guess $T(n) \leq 2^n - 1$.

$$\begin{array}{rcl} T(n) &=& 2T(n-1)+1 \\ &\leq& 2(2^{n-1}-1)+1 \\ &=& 2^n-2+1 \\ &=& 2^n-1, \quad {\rm correct!} \end{array}$$

• Fibonacci Numbers ($F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2}$)

Fibonacci Numbers ($F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2}$)

•
$$F_{n-2} < F_{n-1} < F_n, \forall n \ge 1$$

Fibonacci Numbers ($F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2}$)

- $F_{n-2} < F_{n-1} < F_n, \forall n \ge 1$
- Assume $2^{n-1} < F_n < 2^n$
- Guess $F_n = c \cdot \phi^n$, $1 < \phi < 2$.

Fibonacci Numbers ($F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2}$)

- $F_{n-2} < F_{n-1} < F_n, \forall n \ge 1$
- Assume $2^{n-1} < F_n < 2^n$
- Guess $F_n = c \cdot \phi^n$, $1 < \phi < 2$.

$$c \cdot \phi^{n} = c \cdot \phi^{n-1} + c \cdot \phi^{n-2}$$
$$\phi^{2} = \phi + 1$$
$$\phi = \frac{1 \pm \sqrt{5}}{2}$$

General solution: $F_n = c_1 \cdot \phi_1^n + c_2 \cdot \phi_2^n$

 $F_1 = 0, F_2 = 1$

CS483 Design and Analysis of Algorithms

General solution:
$$F_n = c_1 \cdot \phi_1^n + c_2 \cdot \phi_2^n$$

 $F_1 = 0, F_2 = 1$
 $F_n = \frac{1}{\sqrt{5}} (\frac{1+\sqrt{5}}{2})^n - \frac{1}{\sqrt{5}} (\frac{1-\sqrt{5}}{2})^n$

Summary: Algorithm Analysis

Order of growth of functions

 \succ Analyze algorithms' order of growth (using asymptotic notations).

- Non-recursive algorithms
- Recursive algorithms
 - a. The iteration method
 - b. The substitution method
 - c. Master Theorem (to be introduced) (T(n) = aT(n/b) + f(n).)

Outline

Analysis of Recursive Algorithms

Brute Force

• Ideas

- Examples: Selection Sort & Bubble Sort
- Examples: String Matching
- Examples: Exhaustive Search

Brute Force — Ideas

Brute force is a straightforward approach to solve a problem, usually directly based on the problem statement and definitions of the concepts involved.

Outline Analysis of Recursive Algorithms ► Brute Force • Ideas • Examples: Selection Sort & Bubble Sort • Examples: String Matching • Examples: Exhaustive Search

Selection Sort & Bubble Sort

> Given n orderable items, sort them in non-decreasing order.

Selection Sort

 \succ Given n orderable items, sort them in non-decreasing order.

- \succ Input: An array $A[0, \ldots, n-1]$ of orderable elements.
- > Output: An array $A[0, \ldots, n-1]$ sorted in non-decreasing order.

```
Algorithm 0.2: SelectionSort(A[0, \cdots n-1])
```

```
for i = 0 to n - 2

\begin{cases}
\min = i \\
\text{for } j = i + 1 \text{ to } n - 1 \\
\text{do} \begin{cases}
\text{if } A[j] < A[\min] \\
\text{then } \min = j \\
\text{Swap } A[i] \text{ and } A[\min]
\end{cases}
```

Selection Sort

Analysis

- Input size: n.
- Basic operation: $A[j] < A[\min]$
- Running time:

$$C(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1$$

=
$$\sum_{i=0}^{n-2} [(n-1) - (i-1) + 1] = \sum_{i=0}^{n-2} (n-1-i)$$

=
$$\frac{(n-1)n}{2}$$

=
$$\Theta(n^2)$$

Bubble Sort

- > Given n orderable items, sort them in non-decreasing order.
- > Input: An array $A[0, \ldots, n-1]$ of orderable elements.
- \succ Output: An array $A[0, \ldots, n-1]$ sorted in non-decreasing order.

Algorithm 0.3: BubbleSort($A[0, \cdots n-1]$)

for
$$i = 0$$
 to $n - 2$
do
$$\begin{cases} \text{for } j = 0 \text{ to } n - 2 - i \\ \text{do } \begin{cases} \text{if } A[j+1] < A[j] \\ \text{then Swap } A[j] \text{ and } A[j+1] \end{cases}$$

Bubble Sort

Analysis

- Input size: n.
- Basic operation: A[j+1] < A[j]
- Running time:

$$C(n) = \sum_{i=0}^{n-2} \sum_{j=0}^{n-2-i} 1$$

= $\sum_{i=0}^{n-2} [(n-2-i) - 0 + 1] = \sum_{i=0}^{n-2} (n-1-i)$
= $\frac{(n-1)n}{2}$
= $\Theta(n^2)$

Outline

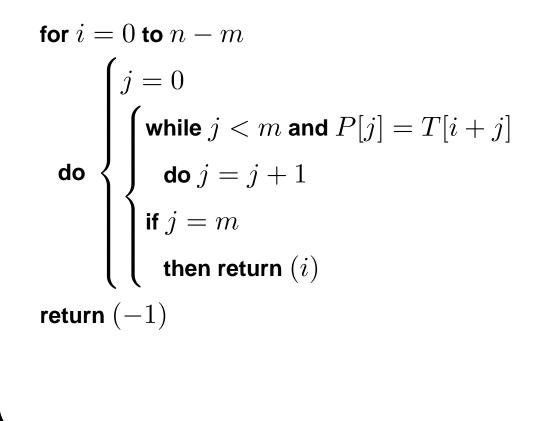
- ➤ Analysis of Recursive Algorithms
- ➤ Brute Force
 - Ideas
 - Examples: Selection Sort & Bubble Sort
 - Examples: String Matching
 - Examples: Exhaustive Search

String Matching

- > Given a string of n characters called the text; and a string of m characters called the pattern, find a substring of the text that matches the pattern.
- > Input: An array T[0, ..., n-1] of n characters representing a text An array P[0, ..., m] characters representing a pattern
- > Output: The index of the first character in the text that starts a matching substring or -1 if the search is unsuccessful
- Example: Pattern: 001011 Text: 10010101100101100101111010 Pattern: happy Text: It is never too late to have a happy childhood.

String Matching

Algorithm 0.4: StringMatching($T[0, \cdots n-1], P[0, \ldots, m-1]$)



String Matching

Analysis

- Input size: n + m.
- Basic operation: P[j] = T[i+j]
- Running time (worst-case):

$$C(n+m) = (n-m+1) \cdot m = \Theta(nm)$$

Outline

➤ Analysis of Recursive Algorithms

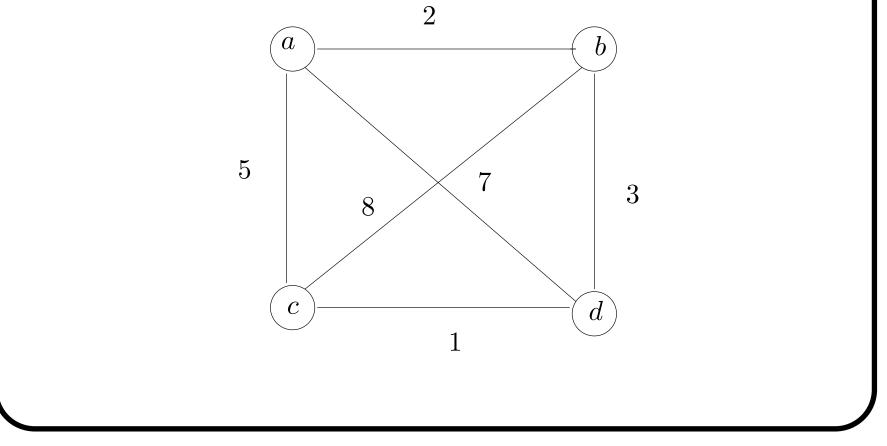
➤ Brute Force

• Ideas

- Examples: Selection Sort & Bubble Sort
- Examples: String Matching
- Examples: Exhaustive Search

Traveling Salesman Problem

TSP: Find the shortest tour through a given set of n cities that visits each city exactly once before returning to the city where it starts.



5 8 7 3 2 0 3 1 d				
Tour	Cost			
$a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$	2+3+7+5=17			
$a \rightarrow b \rightarrow d \rightarrow c \rightarrow a$	2+4+7+8=21			
$a \to c \to b \to d \to a$	8+3+4+5=20			
$a \to c \to d \to b \to a$	8+7+4+2=21			
$a \to d \to b \to c \to a$	5+4+3+8=20			
$a \to d \to c \to b \to a$	5 + 7 + 3 + 2 = 17			

Traveling Salesman Problem

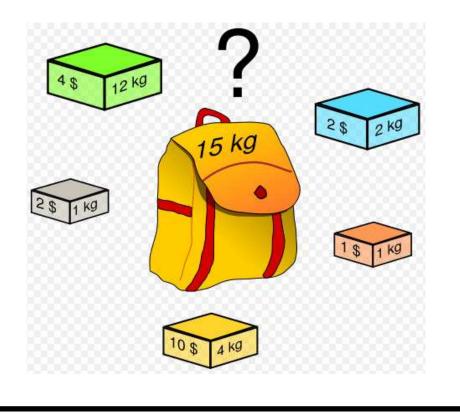
Analysis

- Input size: $n \cdot (n-1)$.
- Running time:

$$C(n) = (n-1)!/2.$$

Knapsack Problem

- > Knapsack Problem: Given n objects, each object i has weight w_i and value v_i , and a knapsack of capacity W, find most valuable items that fit into the knapsack
 - Items are not splittable



Item	Weight	Value
1	2	\$20
2	5	\$30
3	10	\$50
4	5	\$10

Example: Knapsack capacity W = 16

Subset	Total weight	Total value	
{1}	2	\$20	
{2}	5	\$30	
{3}	10	\$50	
<i>{</i> 4 <i>}</i>	5	\$10	
$\{1, 2\}$	7	\$50	
$\{1, 3\}$	12	\$70	
$\{1, 4\}$	7	\$30	
$\{2,3\}$	15	\$80	
$\{2, 4\}$	10	\$40	
$\{3, 4\}$	15	\$60	
$\{1, 2, 3\}$	17	not feasible	
$\{1, 2, 4\}$	12	\$60	
$\{1, 3, 4\}$	17	not feasible	
$\{2, 3, 4\}$	20	not feasible	
$\{1, 2, 3, 4\}$	22	not feasible	

Knapsack Problem

Analysis

- Input size: n (items).
- Running time:

The number of subsets of an n-element set is 2^n .

$$C(n) = \Omega(2^n).$$

Assignment Problem

> Assignment Problem: There are n people to execute n jobs, one person per job. If *i*th person is assigned the *j*th job, the cost is C[i, j], i, j = 1, ..., n.

	Job 1	Job 2	Job 3	Job 4
Person 1	9	2	7	8
Person 2	6	4	3	7
Person 3	5	8	1	8
Person 4	7	6	9	4

Find the assignment with the minimum total cost.

Assignment Problem

Analysis

- Input size: *n*.
- Running time:

$$C(n) = n!.$$

Summary for Brute Force

> Strengths

- 1. Wide applicability
- 2. Simplicity
- 3. Yields reasonable algorithms for some important problems (e.g., matrix multiplication, sorting, searching, string matching)

≻ Weaknesses

- 1. Rarely yields efficient algorithms
- 2. Some brute-force algorithms are unacceptably slow
- 3. Not as constructive as some other design techniques

Summary for Brute Force

Exhaustive-search algorithms run in a realistic amount of time only on very small instances

 \succ In some cases, there are much better alternatives

- Shortest paths (greedy)
- Minimum spanning tree (greedy)
- Assignment problem (iterative improvement)
- In many cases, exhaustive search or its variation is the only known way to get exact solution

➤ Read Chap. 3.

 \succ Next class: Chap. 4 and Master Theorem.