_

CS483-04 Non-recursive and Recursive Algorithm

Analysis

Instructor: Fei Li
Room 443 ST Il
Office hours: Tue. & Thur. 4:30pm - 5:30pm or by appointments
lifei@cs.gmu.edu with subject: CS483

http://www.cs.gmu.edu/~ lifei/teaching/cs483_ fall07/

CS483 Design and Analysis of Algorithms 1

Lecture 04, September 6, 2007

_

= Review and More
B Analysis of Non-recursive Algorithms
B Analysis of Recursive Algorithms

B Examples

J

CS483

Design and Analysis of Algorithms 2

Lecture 04, September 6, 2007

-

_

~N

e O(g(n)):={f(n) | there exist positive constants ¢ and ng suchthat 0 < f(n) < c¢-g(n)
forallm > ng }.

f(n) € O(g(n))
f(n) grow no faster than g(n).

e Q(g(n)):={f(n) | there exist positive constants ¢ and ng such that0 < ¢ - g(n) < f(n)
forallm > ng }.

f(n) € Qg(n))
f(n) grows at least as fast as g(n).

* O(g(n)):

= {f(n) | there exist positive constants ¢1, ¢z, and ng such that
cr-gn) < f

(n) <ca-g(n)forallm > ng }.

f(n) € ©(g(n))

f(n) grows at the same rate as g(n).

J

CS483 Design and Analysis of Algorithms 3

Lecture 04, September 6, 2007

_

| Asymptotic Notations

cag(n)

f(n)
c1g(n)

f(n) € ©(g(n))

cg(n)
f(n)

no n

f(n) € O(g(n))

f(n) € Q(g(n))

J

CS483

Design and Analysis of Algorithms 4

Lecture 04, September 6, 2007

= Tools and techniques to get asymptotic notation
e ['Hopital’s rule
If limy, —00 f(n) = lim,,—, o g(n) = co and the derivatives f’ and ¢’
exist, then

f(n)

!
lim ——~ = lim f,(n)
n—oo g(n n—oo ¢ (n)

e Stirling’s formula

n! ~ 27rn(ﬁ)"
e

where ¢ is the base of natural logarithm, ¢ =~ 2.718. m ~ 3.1415.

_

J

CS483 Design and Analysis of Algorithms 5 Lecture 04, September 6, 2007

Exercises

= All logarithmic functions log,, n belong to the same class O (log n) no matter

what the logarithmic base a > 1 is.

= All polynomials of the same degree k belong to the same class
agn® + ap_1nF1 4+ -+ ayn + ag € O(nk).

= Exponential functions a™ have different orders of growth for different a’s, i.e.,

2n ¢ O(3m).

Inn < (Inn)? <vn<n<n-lnn<n?<n®<2®<nl<n®

. J

CS483 Design and Analysis of Algorithms 6 Lecture 04, September 6, 2007

-

| Some Properties of Asymptotic Order of Growth

B Transitivity
* f(n) € O(g(n)) and g(n) € O(h(n)) = f(n) € O(h(n))
e f(n) € ©(g(n)) and g(n) € O(h(n)) = f(n) € O(h(n))
e f(n) € Q(g(n))and g(n) € Q(h(n)) = f(n) € Q(h(n))
B Reflexivity
e f(n) € O(f(n))
o f(n) € ©(f(n))
o f(n) € Qf(n))
= Symmetry and Transpose Symmetry
e f(n) € O(g(n)) ifandonlyif g(n) € O(f(n))
e f(n) € O(g(n))ifand onlyif g(n) € Q(f(n))

_

J

CS483 Design and Analysis of Algorithms 7 Lecture 04, September 6, 2007

=

= Analysis of Non-recursive Algorithms

| —

|

. J

CS483 Design and Analysis of Algorithms 8 Lecture 04, September 6, 2007

Time Efficiency of Non-recursive Algorithms

Decide on parameter n indicating input size.

Identify algorithm’s basic operation.

e Determine worst, average, and best cases for input of size n.

Sum the number of basic operations executed.

Simplify the sum using standard formula and rules (see Appendix A).

_

J

CS483 Design and Analysis of Algorithms 9

Lecture 04, September 6, 2007

| Time Efficiency of Non-recursive Algorithms

Sy l=1+14-+1=(@u-10)+1

Siyi=1424 =200~ 2 e o(n?),

J

°
B 3
° Z?:l 2 =12 + 92 ot n? — n(n+1)6(2n+1) ~ % c Q(ng)
. nt1l_
oYl d=14a+a*+ - +a"=2— L Va # 1.
CS483 Design and Analysis of Algorithms 10 Lecture 04, September 6, 2007

-

| Example 1: Maximum Element

e Determine the value of the largest element in a given array.
e Input: An array A[0, - - - ,n — 1] of real numbers.

e Output: The value of the largest element in A.
Algorithm 0.1: MAXELEMENT(AO, - - - n — 1)

max = A[0]
fori=1ton—1
it A[i] > max
do
then maxz = Ali]

return (max)

_

J

CS483 Design and Analysis of Algorithms 11

Lecture 04, September 6, 2007

-

| Example 2: Element Uniqueness Problem

o Determine whether all the elements in a given array are distinct.
e Input: An array A[0,...,n —1].

e Output: Returns “true” if all the elements in A are distinct and “false”
otherwise.

Algorithm 0.2: UNIQUEELEMENTS(A]O, - - - n — 1))

fort =0ton —2
forj=i¢+1ton—1
do it Al7] = A[j]

do
then return (false)

return (true)

_

J

CS483 Design and Analysis of Algorithms 12

Lecture 04, September 6, 2007

4) 4)

Example 3: Matrix Multiplication
Example 4: Counting Binary Bits

e Multiply 2 n-by-n matrices by the definition-based algorithm.

e Input: 2 n-by-n matrices A and B. e |nput: A positive decimal integer n.

e Output: Matrix C = A - B. e Output: The number of binary digits in n’s binary representation.
Algorithm 0.3: MATRIXMULTI(A, B) Algorithm 0.4: COUNTBINARYBITS()

fort =0ton —1 count =1

forj=0ton—1 whilen > 1
Cli,j]=0 count = count + 1
do do
do dfork=0ton—1 n=|n/2|
do C[i, j| = C[i, j] + Ali, k] - B[k, j] return (count)
return (C)
CS483 Design and Analysis of Algorithms 13 Lecture 04, September 6, 2007 CS483 Design and Analysis of Algorithms 14 Lecture 04, September 6, 2007

Outline
Recurrences
—

- = A recurrence is an equation or inequality that describes a function in terms of

its value over a smaller value.

= Analysis of Recursive Algorithms - E le: Find !
xample: Find n!

|

. J . J

CS483 Design and Analysis of Algorithms 15 Lecture 04, September 6, 2007 CS483 Design and Analysis of Algorithms 16 Lecture 04, September 6, 2007

Recurrences

= A recurrence is an equation or inequality that describes a function in terms of its value over a

smaller value.
= Example: Find n!
® Non-recursive: 1 -2-3---n
Algorithm 0.5: FINDFACTORIAL-¢(T)
factorial =1
fori =1ton

do factorial = factorial -1

return (factorial)

e Recurrence: f(n) =n- f(n —1)

_

J

CS483 Design and Analysis of Algorithms 17 Lecture 04, September 6, 2007

Algorithm 0.6: FINDFACTORIAL-3(n)

iftn =20
then return (1)

else return (n - FindFactorial — B(n — 1))

_

J

CS483 Design and Analysis of Algorithms 18

Lecture 04, September 6, 2007

-

Example: Counting Number of Bits

e Input: A positive decimal integer 7.

o Output: The number of binary digits in n's binary representation.
Algorithm 0.7: NON-RECURSIVECOUNT(N)

count =1

whilenn > 1
count = count + 1
n=|n/2|

return (count)

Algorithm 0.8: RECURSIVECOUNT(72)

ife=1
do return (1)
else return (RecursiveCount(|n/2]) + 1)

_

J

CS483 Design and Analysis of Algorithms 19 Lecture 04, September 6, 2007

Example: Fibonacci Numbers

J

e Output: A sequence of numbers Fg, F1, Fa, ..., Fy, ... such that
Fpno1+Fn 2, ifn>1
Fy = 1, ifn=1
0, ifn = 0.
CS483 Design and Analysis of Algorithms 21 Lecture 04, September 6, 2007

Example: Fibonacci Numbers

e Output: A sequence of numbers Fp, Fy, Fo, . ..

F, = 1

Algorithm 0.9: FIBNUMBER(1)

iftn=20
return (0)
ifn=1
return (1)
else return (FibNumber(n — 1) + FibNumber(n — 2))

_

, Fn, ... such that

Fn71+Fn727 ifn > 1
R itn =1

0, ifn = 0.

J

CS483 Design and Analysis of Algorithms 22

Lecture 04, September 6, 2007

Example: Hanoi Tower Problem

o Input: n disks in order of sizes on peg a. 3 pegs a, b, and ¢

http://en.wikipedia.org/wiki/Tower of Hanoi

Algorithm 0.10: HANOITOWER(N, a, ¢, b)

ifn=1
Move the disk from a to ¢
HanoiTower(n — 1, a, b, ¢)
else { Move the largest disk from a to ¢

HanoiTower(n — 1, b, ¢, a)

_

o Move all the disks from peg a to peg c. Large disk cannot be on top of a smaller one.

J

CS483 Design and Analysis of Algorithms 23

Lecture 04, September 6, 2007

Analysis of Recursive Algorithms

B The iteration method

depending only on 1 and the initial conditions.
> The substitution method

B Master Theorem

(To be introduced in Chapter 4.)

_

e Expand (iterate) the recurrence and express it as a summation of terms

J

CS483 Design and Analysis of Algorithms 24

Lecture 04, September 6, 2007

| Iteration Method: Examples

o 1!

e Tower of Hanoi

_

J

CS483 Design and Analysis of Algorithms 25

Lecture 04, September 6, 2007

_

| Iteration: Example

en!(T(n)=T(n—-1)+1)

T(n) Tn—1)+1

(T(n—2)+1)+1
= T(h—-2)+2

= Tn—1)+1

= TO)+n=n

e Tower of Hanoi (T'(n) = 2T (n — 1) + 1) 727

J

CS483

Design and Analysis of Algorithms 26

Lecture 04, September 6, 2007

-

_

| Iteration: Example

en!T(n)=T(n—-1)+1)
e Tower of Hanoi (T'(n) = 2T (n — 1) + 1)

T(n) = 2T(n—1)+1
= 22T(n-2)+1)+1
= 2°T(n-2)+2+1

= 2T(n—i)+21 4+ +1

— 2n—1T(1)+2n—1+2n—1+.”+1
n—2

= 2Ty 4+ > 2

=0
— 2n—1 +2n—1 —1
= 2"-1

J

CS483 Design and Analysis of Algorithms 27

Lecture 04, September 6, 2007

_

Assignment 1 |

1. Prove or find a counter-example:

(3

2. p. 8, Exercises (1.1) 5, 6.

> Problems

3. p. 60, Exercises (2.2) 5, 6
4. p. 67, Exercises (2.3) 2, 4
5. p. 76, Exercises (2.4) 1, 3,5

> Due date: September 20, 2007. In class

" <nl< (g)”, ifn > 6.

J

CS483

Design and Analysis of Algorithms 37

Lecture 04, September 6, 2007

