CS483-04 Non-recursive and Recursive Algorithm

Analysis

Instructor: Fei Li
Room 443 ST I
Office hours: Tue. & Thur. 4:30pm - 5:30pm or by appointments
lifei@cs.gmu.edu with subject: CS483

\ http://www.cs.gmu.edu/~ lifei/teaching/cs483 fallo07/)

CS483 Design and Analysis of Algorithms 1 Lecture 04, September 6, 2007

= Review and More

=

=

_ J

CS483 Design and Analysis of Algorithms 2 Lecture 04, September 6, 2007

-

A

e O(g(n)):={f(n) | there exist positive constants ¢ and ng such that0 < f(n) < c¢- g(n)
foralln > ng }.

f(n) € O(g(n))
f(n) grow no faster than g(n).

e Q(g(n)):={f(n) | there exist positive constants ¢ and ng suchthat 0 < ¢ - g(n) < f(n)
foralln > ng }.

f(n) € Q(g(n))

f(n) grows at least as fast as g(n).

e O(g(n)):

= {f(n) | there exist positive constants c1, c2, and ng such that
cr-g(n) < f

(n) < co-g(n)foraln > ng }.

f(n) € ©(g(n))

f(n) grows at the same rate as g(n).

J

CS483 Design and Analysis of Algorithms 3 Lecture 04, September 6, 2007

_

|Asymptotic Notations I

cag(n)
f(n)
c1g(n)

f(n) € ©(g(n))

no n

f(n) € O(g(n)) f(n) € Q(g(n))

J

CS483 Design and Analysis of Algorithms 4 Lecture 04, September 6, 2007

_

4)

= Tools and techniques to get asymptotic notation
e |'Hopital’s rule

If lim,, o f(n) = lim,, o g(n) = 0o and the derivatives f” and ¢’

exist, then

fm) S
A gn) s ()

e Stirling’s formula

where e is the base of natural logarithm, e =~ 2.718. m ~ 3.1415.

J

CS483

Design and Analysis of Algorithms 5 Lecture 04, September 6, 2007

_

Exercises

= All logarithmic functions log,, n belong to the same class © (log 1) no matter

what the logarithmic base a > 1 is.

= All polynomials of the same degree k belong to the same class
apn® 4+ ap_1n* 1+ +an +ag € O(nF).

= Exponential functions a™ have different orders of growth for different a’s, i.e.,

o ¢ O(3").

Inn < (Inn)?<vn<n<n-lnn<n?<n®<2"<n!l<n®

J

CS483

Design and Analysis of Algorithms 6 Lecture 04, September 6, 2007

-

~

= Transitivity

= Reflexivity
e f(n) € O(f(n))
e f(n) € ©(f(n))
e f(n) € Q(f(n))

= Symmetry and Transpose Symmetry

_

| Some Properties of Asymptotic Order of Growth I

e f(n) € O(g(n)) and g(n) € O(h(n)) = f(
e f(n) € B(g(n)) and g(n) € O(h(n)) = f(n) €
e f(n) € Qg(n))and g(n) € Q(h(n)) = f(

S

e f(n) € O(g(n))ifandonlyif g(n) € O(f(n))
e f(n) € O(g(n))ifandonlyif g(n) € Q(f(n))

J

CS483 Design and Analysis of Algorithms 7

Lecture 04, September 6, 2007

=
B Analysis of Non-recursive Algorithms
=

|

_

J

CS483 Design and Analysis of Algorithms 8

Lecture 04, September 6, 2007

_

| Time Efficiency of Non-recursive Algorithms I

Decide on parameter n indicating input size.

Identify algorithm’s basic operation.

Determine worst, average, and best cases for input of size n.
Sum the number of basic operations executed.

Simplify the sum using standard formula and rules (see Appendix A).

J

CS483 Design and Analysis of Algorithms 9

Lecture 04, September 6, 2007

_

| Time Efficiency of Non-recursive Algorithms I

e l=141+-4+1=(u—-1)+1

1

Z?:l P2=124+224+...4n? = —”("+1)6(2"+1) ~ e Q(n?’)

3

S at=14a+a*+---+a" = “n+_1fl,va7é1.

a

J

CS483 Design and Analysis of Algorithms 10

Lecture 04, September 6, 2007

4)

| Example 1. Maximum Elementl

e Determine the value of the largest element in a given array.

e Input: An array A[0, - - -, n — 1] of real numbers.

e Output: The value of the largest element in A.
Algorithm 0.1: MAXELEMENT(A]O, - --n — 1])

maz = A[0]
fort =1ton—1
if A[i] > max
do
then mazx = Ali]

return (max)

_ J

CS483 Design and Analysis of Algorithms 11 Lecture 04, September 6, 2007

4)

| Example 2: Element Uniqueness Problem I

e Determine whether all the elements in a given array are distinct.

e Input: An array A[0,...,n — 1].

”

e Output: Returns “true” if all the elements in A are distinct and “false

otherwise.
Algorithm 0.2: UNIQUEELEMENTS(A[O, - --n — 1])

fort =0ton — 2
forp=14+1ton—1
do i1 AJi) = AJj]
do
then return (false)

return (true)

_ J

CS483 Design and Analysis of Algorithms 12 Lecture 04, September 6, 2007

4)

| Example 3: Matrix Multiplication I

e Multiply 2 n-by-n matrices by the definition-based algorithm.

e Input: 2 n-by-n matrices A and B.

e Output: Matrix C' = A - B.
Algorithm 0.3: MATRIXMULTI(A, B)

fort =0ton —1
(forj:Oton—l
Cli,j] =0
do {fork=0ton—1
do C[i, j] = C[i, j] + A[i, k] - B[k, j]

do <

return (C)

_ J

CS483 Design and Analysis of Algorithms 13 Lecture 04, September 6, 2007

| Example 4: Counting Binary Bitsl

e Input: A positive decimal integer n.

e OQOutput: The number of binary digits in n’s binary representation.

Algorithm 0.4: COUNTBINARYBITS(N)

count =1

whilen > 1
count = count + 1
n=[n/2]

return (count)

do

_ J

CS483 Design and Analysis of Algorithms 14 Lecture 04, September 6, 2007

=

=

= Analysis of Recursive Algorithms

=

_

J

CS483 Design and Analysis of Algorithms 15 Lecture 04, September 6, 2007

| Recurrences I

= A recurrence is an equation or inequality that describes a function in terms of

its value over a smaller value.

= Example: Find n!

_

J

CS483 Design and Analysis of Algorithms 16 Lecture 04, September 6, 2007

_

| Recurrences I

B A recurrence is an equation or inequality that describes a function in terms of its value over a

smaller value.
= Example: Find n!
e Non-recursive: 1 -2-3---n

Algorithm 0.5: FINDFACTORIAL-&(T)

factorial =1
fort =1ton
do factorial = factorial - i

return (factorial)

e Recurrence: f(n) =n- f(n —1)

J

CS483 Design and Analysis of Algorithms 17

Lecture 04, September 6, 2007

_

Algorithm 0.6: FINDFACTORIAL-(3(n)

ifn=20
then return (1)

else return (n - FindFactorial — 3(n — 1))

J

CS483 Design and Analysis of Algorithms 18

Lecture 04, September 6, 2007

-

® Input: A positive decimal integer n.

Algorithm 0.7: NON-RECURSIVECOUNT(7)

count =1

whilen > 1
count = count + 1
n=[n/2|

return (count)

do

Algorithm 0.8: RECURSIVECOUNT(N)

ift=1
do return (1)
else return (RecursiveCount(|n/2]) + 1)

_

| Example: Counting Number of Bitsl

e Output: The number of binary digits in n’s binary representation.

J

CS483 Design and Analysis of Algorithms 19

Lecture 04, September 6, 2007

_

e Output: A sequence of numbers Fo, F1, Fo, ..., Fp,...
Fn—l +Fn—Qa
F, = 1,
0,

| Example: Fibonacci Numbersl

such that
ifn >1
ifn=1
ifn = 0.

J

CS483 Design and Analysis of Algorithms 21

Lecture 04, September 6, 2007

| Example: Fibonacci Numbersl

e Output: A sequence of numbers Fy, F1, Fa, ..., F,, ... suchthat

Frn_1+ Fh_2, ifn > 1
F, = 1, ifn=1

0, if n = 0.

Algorithm 0.9: FIBNUMBER(T)

ifn=0
return (0)

ifn=1
return (1)

else return (FibNumber(n — 1) + FibNumber(n — 2))

_

CS483 Design and Analysis of Algorithms 22

J

Lecture 04, September 6, 2007

_

| Example: Hanoi Tower Problem I

e Move all the disks from peg a to peg c. Large disk cannot be on top of a smaller one.

e Input: n disks in order of sizes on peg a. 3 pegs a, b, and ¢

http://en.wikipedia.org/wiki/Tower of Hanoi

Algorithm 0.10: HANOITOWER(N, a, ¢, b)

ifn=1
Move the disk from a to ¢
HanoiTower(n — 1, a, b, ¢)
else < Move the largest disk from a to ¢

HanoiTower(n — 1, b, ¢, a)

J

CS483 Design and Analysis of Algorithms 23

Lecture 04, September 6, 2007

| Analysis of Recursive Algorithms I

= The iteration method

e Expand (iterate) the recurrence and express it as a summation of terms

depending only on 7 and the initial conditions.
> The substitution method

= Master Theorem

(To be introduced in Chapter 4.)

_ J

CS483 Design and Analysis of Algorithms 24 Lecture 04, September 6, 2007

| Iteration Method: Examplesl

o 1!

e Tower of Hanoi

_ J

CS483 Design and Analysis of Algorithms 25 Lecture 04, September 6, 2007

Iteration: Example I

e n!(T(n)=T(n—-1)+1)
Tn) = Tnh-1)+1
= (T(n—2)+1)+1
= T(n—2)+2

= T(n—1)+1

= TO0)+n=n

e Tower of Hanoi (T'(n) = 2T (n — 1) + 1) 2?2

_ J

CS483 Design and Analysis of Algorithms 26 Lecture 04, September 6, 2007

4)

| Iteration: Example I

e n!(T(n)=T(n—-1)+1)

e Tower of Hanoi (T'(n) = 2T(n — 1) + 1)
Tn) = 2T(n—-1)+1
202T(n — 2) + 1) + 1
= 22T(n—-2)+2+1

= 2T(n—i)+27 4. . 41

n—2
= 27T+) 2

i=0
— 2n—1 _|_ 2n—1 _ 1

_ - Y

CS483 Design and Analysis of Algorithms 27 Lecture 04, September 6, 2007

|Assignment 1 I

1. Prove or find a counter-example:

= Problems

2. p. 8, Exercises (1.1) 5, 6.
3. p. 60, Exercises (2.2) 5, 6
4. p. 67, Exercises (2.3) 2, 4
5

. p. 76, Exercises (2.4) 1, 3,5

= Due date: September 20, 2007. In class

_

(%)” <nl< (g)", ifn > 6.

J

CS483 Design and Analysis of Algorithms 37 Lecture 04, September 6, 2007

