CS483-04 Non-recursive and Recursive Algorithm

Analysis

Instructor: Fei Li
Room 443 ST I
Office hours: Tue. & Thur. 4:30pm - 5:30pm or by appointments
lifei@cs.gmu.edu with subject: CS483

\ http://www.cs.gmu.edu/~ lifei/teaching/cs483 fallo07/ )
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e O(g(n)):={f(n) | there exist positive constants ¢ and ng such that0 < f(n) < c¢- g(n)
foralln > ng }.

f(n) € O(g(n))
f(n) grow no faster than g(n).

e Q(g(n)):={f(n) | there exist positive constants ¢ and ng suchthat 0 < ¢ - g(n) < f(n)
foralln > ng }.

f(n) € Q(g(n))

f(n) grows at least as fast as g(n).

e O(g(n)):

= {f(n) | there exist positive constants c1, c2, and ng such that
cr-g(n) < f

(n) < co-g(n)foraln > ng }.

f(n) € ©(g(n))

f(n) grows at the same rate as g(n).
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|Asymptotic Notations I

cag(n)
f(n)
c1g(n)

f(n) € ©(g(n))

no n

f(n) € O(g(n)) f(n) € Q(g(n))
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= Tools and techniques to get asymptotic notation
e |'Hopital’s rule

If lim,, o f(n) = lim,, o g(n) = 0o and the derivatives f” and ¢’

exist, then

fm) S
A gn) s ()

e Stirling’s formula

where e is the base of natural logarithm, e =~ 2.718. m ~ 3.1415.
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Exercises

= All logarithmic functions log,, n belong to the same class © (log 1) no matter

what the logarithmic base a > 1 is.

= All polynomials of the same degree k belong to the same class
apn® 4+ ap_1n* 1+ +an +ag € O(nF).

= Exponential functions a™ have different orders of growth for different a’s, i.e.,

o ¢ O(3").

Inn < (Inn)?<vn<n<n-lnn<n?<n®<2"<n!l<n®
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= Transitivity

= Reflexivity
e f(n) € O(f(n))
e f(n) € ©(f(n))
e f(n) € Q(f(n))

= Symmetry and Transpose Symmetry

\_

| Some Properties of Asymptotic Order of Growth I

e f(n) € O(g(n)) and g(n) € O(h(n)) = f(
e f(n) € B(g(n)) and g(n) € O(h(n)) = f(n) €
e f(n) € Qg(n))and g(n) € Q(h(n)) = f(

S

e f(n) € O(g(n))ifandonlyif g(n) € O(f(n))
e f(n) € O(g(n))ifandonlyif g(n) € Q(f(n))
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B Analysis of Non-recursive Algorithms
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| Time Efficiency of Non-recursive Algorithms I

Decide on parameter n indicating input size.

Identify algorithm’s basic operation.

Determine worst, average, and best cases for input of size n.
Sum the number of basic operations executed.

Simplify the sum using standard formula and rules (see Appendix A).

J
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| Time Efficiency of Non-recursive Algorithms I

e l=141+-4+1=(u—-1)+1

1

Z?:l P2=124+224+...4n? = —”("+1)6(2"+1) ~ e Q(n?’)

3

S at=14a+a*+---+a" = “n+_1fl,va7é1.

a
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| Example 1. Maximum Elementl

e Determine the value of the largest element in a given array.

e Input: An array A[0, - - -, n — 1] of real numbers.

e Output: The value of the largest element in A.
Algorithm 0.1: MAXELEMENT(A]O, - --n — 1])

maz = A[0]
fort =1ton—1
if A[i] > max
do
then mazx = Ali]

return (max)
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| Example 2: Element Uniqueness Problem I

e Determine whether all the elements in a given array are distinct.

e Input: An array A[0,...,n — 1].

”

e Output: Returns “true” if all the elements in A are distinct and “false

otherwise.
Algorithm 0.2: UNIQUEELEMENTS(A[O, - --n — 1])

fort =0ton — 2
forp=14+1ton—1
do i1 AJi) = AJj]
do
then return (false)

return (true)
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| Example 3: Matrix Multiplication I

e Multiply 2 n-by-n matrices by the definition-based algorithm.

e Input: 2 n-by-n matrices A and B.

e Output: Matrix C' = A - B.
Algorithm 0.3: MATRIXMULTI(A, B)

fort =0ton —1
(forj:Oton—l
Cli,j] =0
do {fork=0ton—1
do C[i, j] = C[i, j] + A[i, k] - B[k, j]

do <

return (C)
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| Example 4: Counting Binary Bitsl

e Input: A positive decimal integer n.

e OQOutput: The number of binary digits in n’s binary representation.

Algorithm 0.4: COUNTBINARYBITS(N)

count =1

whilen > 1
count = count + 1
n=[n/2]

return (count)

do

\_ J

CS483 Design and Analysis of Algorithms 14 Lecture 04, September 6, 2007




=

=

= Analysis of Recursive Algorithms

=

\_
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| Recurrences I

= A recurrence is an equation or inequality that describes a function in terms of

its value over a smaller value.

= Example: Find n!

\_
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| Recurrences I

B A recurrence is an equation or inequality that describes a function in terms of its value over a

smaller value.
= Example: Find n!
e Non-recursive: 1 -2-3---n

Algorithm 0.5: FINDFACTORIAL-&(T)

factorial =1
fort =1ton
do factorial = factorial - i

return (factorial)

e Recurrence: f(n) =n- f(n —1)

J
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Algorithm 0.6: FINDFACTORIAL-(3(n)

ifn=20
then return (1)

else return (n - FindFactorial — 3(n — 1))

J
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® Input: A positive decimal integer n.

Algorithm 0.7: NON-RECURSIVECOUNT(7)

count =1

whilen > 1
count = count + 1
n=[n/2|

return (count)

do

Algorithm 0.8: RECURSIVECOUNT(N)

ift=1
do return (1)
else return (RecursiveCount(|n/2]) + 1)

\_

| Example: Counting Number of Bitsl

e Output: The number of binary digits in n’s binary representation.

J
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e Output: A sequence of numbers Fo, F1, Fo, ..., Fp,...
Fn—l +Fn—Qa
F, = 1,
0,

| Example: Fibonacci Numbersl

such that
ifn >1
ifn=1
ifn = 0.

J
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| Example: Fibonacci Numbersl

e Output: A sequence of numbers Fy, F1, Fa, ..., F,, ... suchthat

Frn_1+ Fh_2, ifn > 1
F, = 1, ifn=1

0, if n = 0.

Algorithm 0.9: FIBNUMBER(T)

ifn=0
return (0)

ifn=1
return (1)

else return (FibNumber(n — 1) + FibNumber(n — 2))
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| Example: Hanoi Tower Problem I

e Move all the disks from peg a to peg c. Large disk cannot be on top of a smaller one.

e Input: n disks in order of sizes on peg a. 3 pegs a, b, and ¢

http://en.wikipedia.org/wiki/Tower of Hanoi

Algorithm 0.10: HANOITOWER(N, a, ¢, b)

ifn=1
Move the disk from a to ¢
HanoiTower(n — 1, a, b, ¢)
else < Move the largest disk from a to ¢

HanoiTower(n — 1, b, ¢, a)

J
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| Analysis of Recursive Algorithms I

= The iteration method

e Expand (iterate) the recurrence and express it as a summation of terms

depending only on 7 and the initial conditions.
> The substitution method

= Master Theorem

(To be introduced in Chapter 4.)

\_ J
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| Iteration Method: Examplesl

o 1!

e Tower of Hanoi
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Iteration: Example I

e n!(T(n)=T(n—-1)+1)
Tn) = Tnh-1)+1
= (T(n—2)+1)+1
= T(n—2)+2

= T(n—1)+1

= TO0)+n=n

e Tower of Hanoi (T'(n) = 2T (n — 1) + 1) 2?2
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| Iteration: Example I

e n!(T(n)=T(n—-1)+1)

e Tower of Hanoi (T'(n) = 2T(n — 1) + 1)
Tn) = 2T(n—-1)+1
202T(n — 2) + 1) + 1
= 22T(n—-2)+2+1

= 2T(n—i)+27 4. . 41

n—2
= 27T+ ) 2

i=0
— 2n—1 _|_ 2n—1 _ 1

_ - Y
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|Assignment 1 I

1. Prove or find a counter-example:

= Problems

2. p. 8, Exercises (1.1) 5, 6.
3. p. 60, Exercises (2.2) 5, 6
4. p. 67, Exercises (2.3) 2, 4
5

. p. 76, Exercises (2.4) 1, 3,5

= Due date: September 20, 2007. In class

\_

(%)” <nl< (g)", ifn > 6.
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