
CS483-03 Asymptotic Notations for Algorithm Analysis

Instructor: Fei Li

Room 443 ST II

Office hours: Tue. & Thur. 4:30pm - 5:30pm or by appointments

lifei@cs.gmu.edu with subject: CS483

http://www.cs.gmu.edu/∼ lifei/teaching/cs483 fall07/

Some of this lecture note is based on Dr. J.M. Lien’s lecture notes.

CS483 Design and Analysis of Algorithms 1 Lecture 03, September 4, 2007

Outline

➣ Review

➣ Order of growth

➣ O, Ω and Θ

➣ Examples and exercises

CS483 Design and Analysis of Algorithms 2 Lecture 03, September 4, 2007

Review

In last class

➣ Analysis framework

� Input size

� Basic operation

� Running time

T (n) ≈ cop · C(n),

where

– n is the input size

– C(n) is the total number of basic operations for input of size n.

– cop is the time needed to execute one single basic operation.

� Worst-case, best-case, average-case

CS483 Design and Analysis of Algorithms 3 Lecture 03, September 4, 2007

Outline

➣ Review

➣ Order of growth

➣ O, Ω and Θ

➣ Examples and exercises

CS483 Design and Analysis of Algorithms 4 Lecture 03, September 4, 2007



Orders of Growth

➣ Running time T (n)

T (n) ≈ cop · C(n),

where n is the input size, C(n) is the total number of basic operations for

input of size n, and cop is the time needed to execute one single basic

operation.

➣ Example 1

Given that C(n) = 1
2n(n − 1), how much the performance will be affected

if the input size n is doubled?

growth =
T (2n)

T (n)
≈ cop · C(2n)

cop · C(n)
=

4n − 2

n − 1
≈ 4

CS483 Design and Analysis of Algorithms 5 Lecture 03, September 4, 2007

Orders of Growth

➣ Running time T (n)

T (n) ≈ cop · C(n),

where n is the input size, C(n) is the total number of basic operations for

input of size n, and cop is the time needed to execute one single basic

operation.

➣ Example 2

Given an algorithm A with CA(n) = 10 · n and another algorithm B with

CB(n) = 1
2n(n − 1), which algorithm is better?

Answer =

8<
:

B, if n ≤ 21

A, if n > 21

CS483 Design and Analysis of Algorithms 6 Lecture 03, September 4, 2007

 0

 100

 200

 300

 400

 500

 0  5  10  15  20  25  30  35  40

R
un

ni
ng

 ti
m

e

Input size n

Compare A and B

10 * x
0.5 * x * (x - 1)

CS483 Design and Analysis of Algorithms 7 Lecture 03, September 4, 2007

Orders of Growth

➣ Some of the commonly seen functions representing the number of the basic

operations C(n)

1. n (linear)

2. n2 (quadratic)

3. n3 (cubic)

4. log10(n) (logarithmic)

5. n log10(n) (n-log-n)

6. log2
10(n) (quadratic of log)

7.
√

n (square root of n)

8. 2n (exponential)

9. n! (factorial function of n, 1808 by Christian Kramp)

➣ Can you order them by their growth rate?

CS483 Design and Analysis of Algorithms 8 Lecture 03, September 4, 2007



CS483 Design and Analysis of Algorithms 9 Lecture 03, September 4, 2007

Orders of Growth

n n2 n3 2n n!

10 102 103 1024 3.6 × 106

100 104 106 1.3 × 1030 9.3 × 10157

1000 106 109 1.1 × 10301

10000 108 1012

CS483 Design and Analysis of Algorithms 10 Lecture 03, September 4, 2007

n log
10

(n) n log
10

(n) log2

10
(n)

√
n

10 1 10 1 3.16

100 2 200 4 10

1000 3 3000 9 31.6

10000 4 40000 16 100

Order the functions by their growth rate

log
10

(n) < log2

10
(n) <

√
n < n < n log

10
(n) < n

2
< n

3
< 2n

< n!

CS483 Design and Analysis of Algorithms 11 Lecture 03, September 4, 2007

Power of Growing Exponentially

from http://www.ideum.com/portfolio

➣ The king owns Shashi: 10, 000, 000, 000, 000, 000, 000 grains of rice.

CS483 Design and Analysis of Algorithms 12 Lecture 03, September 4, 2007



Outline

➣ Review

➣ Order of growth

➣ O, Ω and Θ

➣ Examples and exercises

CS483 Design and Analysis of Algorithms 13 Lecture 03, September 4, 2007

Asymptotic Notations for Orders of Growth

➣ Ignore constant factors

➣ Ignore small input sizes

➣ Focus on order of growth

� O(g(n)): a set of functions f(n) that grow no faster than g(n).

� Ω(g(n)): a set of functions f(n) that grow at least as fast as g(n).

� Θ(g(n)): a set of functions f(n) that grow at the same rate as g(n).

CS483 Design and Analysis of Algorithms 14 Lecture 03, September 4, 2007

Asymptotic Notations

� O(g(n)) := {f(n) | there exist positive constants c and n0 such that 0 ≤ f(n) ≤ c · g(n)

for all n ≥ n0 }.

f(n) ∈ O(g(n))

f(n) grow no faster than g(n).

� Ω(g(n)) := {f(n) | there exist positive constants c and n0 such that 0 ≤ c · g(n) ≤ f(n)

for all n ≥ n0 }.

f(n) ∈ Ω(g(n))

f(n) grows at least as fast as g(n).

� Θ(g(n)) := {f(n) | there exist positive constants c1, c2 , and n0 such that

c1 · g(n) ≤ f(n) ≤ c2 · g(n) for all n ≥ n0 }.

f(n) ∈ Θ(g(n))

f(n) grows at the same rate as g(n).

CS483 Design and Analysis of Algorithms 15 Lecture 03, September 4, 2007

Asymptotic Notations

c1g(n)

c2g(n)

f(n)f(n)

f(n)

n0n0

n0

nn

n

cg(n)

cg(n)

f(n) ∈ Θ(g(n))

f(n) ∈ O(g(n)) f(n) ∈ Ω(g(n))

CS483 Design and Analysis of Algorithms 16 Lecture 03, September 4, 2007



Examples

➣ O(g(n)) := {f(n) | there exist positive constants c and n0 such that 0 ≤ f(n) ≤ c · g(n)

for all n ≥ n0 }.

� 2n2 − 5n + 1 ∈ O(n2)

� 2n + n100 − 2 ∈ O(n!)

� 2n + 6 /∈ O(log n)

➣ Ω(g(n)) := {f(n) | there exist positive constants c and n0 such that 0 ≤ c · g(n) ≤ f(n)

for all n ≥ n0 }.

➣ For any 2 functions f(n) and g(n), f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and

f(n) = Ω(g(n)).

CS483 Design and Analysis of Algorithms 17 Lecture 03, September 4, 2007

Examples

➣ O(g(n)) := {f(n) | there exist positive constants c and n0 such that 0 ≤ f(n) ≤ c · g(n)

for all n ≥ n0 }.

� 2n2 − 5n + 1 ∈ O(n2)

� 2n + n100 − 2 ∈ O(n!)

� 2n + 6 /∈ O(log n)

➣ Ω(g(n)) := {f(n) | there exist positive constants c and n0 such that 0 ≤ c · g(n) ≤ f(n)

for all n ≥ n0 }.

� 2n2 − 5n + 1 ∈ Ω(n2)

� 2n + n100 − 2 /∈ Ω(n!)

� 2n + 6 ∈ Ω(log n)

➣ For any 2 functions f(n) and g(n), f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and

f(n) = Ω(g(n)).

CS483 Design and Analysis of Algorithms 18 Lecture 03, September 4, 2007

Examples

➣ O(g(n)) := {f(n) | there exist positive constants c and n0 such that 0 ≤ f(n) ≤ c · g(n)

for all n ≥ n0 }.

� 2n2 − 5n + 1 ∈ O(n2)

� 2n + n100 − 2 ∈ O(n!)

� 2n + 6 /∈ O(log n)

➣ Ω(g(n)) := {f(n) | there exist positive constants c and n0 such that 0 ≤ c · g(n) ≤ f(n)

for all n ≥ n0 }.

� 2n2 − 5n + 1 ∈ Ω(n2)

� 2n + n100 − 2 /∈ Ω(n!)

� 2n + 6 ∈ Ω(log n)

➣ For any 2 functions f(n) and g(n), f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and

f(n) = Ω(g(n)).

� 2n2 − 5n + 1 ∈ Θ(n2)

� 2n + n100 − 2 /∈ Θ(n!)

� 2n + 6 /∈ Θ(log n)

CS483 Design and Analysis of Algorithms 19 Lecture 03, September 4, 2007

Establish Order of Growth

lim
n→∞

f(n)

g(n)
=

⎧⎪⎪⎨
⎪⎪⎩

0 f(n) has a smaller order of growth than g(n)

c > 0 f(n) has the same order of growth as g(n)

∞ f(n) has a larger order of growth than g(n)

2n2 − 5n + 1 vs. n2

2n + n100 − 2 vs. n!

2n + 6 vs. log n

CS483 Design and Analysis of Algorithms 20 Lecture 03, September 4, 2007



Establish Order of Growth

� L’Hopital’s rule

If limn→∞ f(n) = limn→∞ g(n) = ∞ and the derivatives f ′ and g′

exist, then

lim
n→∞

f(n)

g(n)
= lim

n→∞

f ′(n)

g′(n)

� Stirling’s formula

n! ≈
√

2πn(
n

e
)n

where e is the natural logarithm, e ≈ 2.718. π ≈ 3.1415.

√
2πn(

n

e
)n ≤ n! ≤

√
2πn(

n

e
)n+ 1

12n

CS483 Design and Analysis of Algorithms 21 Lecture 03, September 4, 2007

Some Facts on Growth of Order

� A weak version of Stirling’s formula

(
n

3
)n < n! < (

n

2
)n, if n ≥ 6.

� Another view

lnn! ≈ n lnn − n +
ln n

2
+

ln 2π

2

� 11! and 20! are the largest factorials stored in 32-bit and 64-bit computers.

(20! = 2432902008176640000)

� googol is 10100 and 70! ≈ 1.198 googol.

Consider arranging 70 people in a row.

� A googol is greater than the number of atoms in the observable universe,

which has been variously estimated from 1079 up to 1081.

CS483 Design and Analysis of Algorithms 22 Lecture 03, September 4, 2007

Exercises

2n2 − 5n + 1 vs. n2

2n + n100 − 2 vs. n!

2n + 6 vs. log n

CS483 Design and Analysis of Algorithms 23 Lecture 03, September 4, 2007

Exercises

➣ All logarithmic functions loga n belong to the same class Θ(log n) no matter

what the logarithmic base a > 1 is.

➣ All polynomials of the same degree k belong to the same class

aknk + ak−1n
k−1 + · · · + a1n + a0 ∈ Θ(nk).

➣ Exponential functions an have different orders of growth for different a’s, i.e.,

2n /∈ Θ(3n).

➣ Θ(log n) < Θ(na) < Θ(an) < Θ(n!) < Θ(nn), where a > 1.

CS483 Design and Analysis of Algorithms 24 Lecture 03, September 4, 2007


