
CS483-03 Asymptotic Notations for Algorithm Analysis

Instructor: Fei Li

Room 443 ST II

Office hours: Tue. & Thur. 4:30pm - 5:30pm or by appointments

lifei@cs.gmu.edu with subject: CS483

http://www.cs.gmu.edu/∼ lifei/teaching/cs483 fall07/

Some of this lecture note is based on Dr. J.M. Lien’s lecture notes.
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Review

In last class

➣ Analysis framework

� Input size

� Basic operation

� Running time

T (n) ≈ cop · C(n),

where

– n is the input size

– C(n) is the total number of basic operations for input of size n.

– cop is the time needed to execute one single basic operation.

� Worst-case, best-case, average-case
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Orders of Growth

➣ Running time T (n)

T (n) ≈ cop · C(n),

where n is the input size, C(n) is the total number of basic operations for

input of size n, and cop is the time needed to execute one single basic

operation.

➣ Example 1

Given that C(n) = 1
2n(n − 1), how much the performance will be affected

if the input size n is doubled?

growth =
T (2n)

T (n)
≈ cop · C(2n)

cop · C(n)
=

4n − 2

n − 1
≈ 4
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Orders of Growth

➣ Running time T (n)

T (n) ≈ cop · C(n),

where n is the input size, C(n) is the total number of basic operations for

input of size n, and cop is the time needed to execute one single basic

operation.

➣ Example 2

Given an algorithm A with CA(n) = 10 · n and another algorithm B with

CB(n) = 1
2n(n − 1), which algorithm is better?

Answer =

8<
:

B, if n ≤ 21

A, if n > 21
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Orders of Growth

➣ Some of the commonly seen functions representing the number of the basic

operations C(n)

1. n (linear)

2. n2 (quadratic)

3. n3 (cubic)

4. log10(n) (logarithmic)

5. n log10(n) (n-log-n)

6. log2
10(n) (quadratic of log)

7.
√

n (square root of n)

8. 2n (exponential)

9. n! (factorial function of n, 1808 by Christian Kramp)

➣ Can you order them by their growth rate?
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Orders of Growth

n n2 n3 2n n!

10 102 103 1024 3.6 × 106

100 104 106 1.3 × 1030 9.3 × 10157

1000 106 109 1.1 × 10301

10000 108 1012

CS483 Design and Analysis of Algorithms 10 Lecture 03, September 4, 2007

n log
10

(n) n log
10

(n) log2

10
(n)

√
n

10 1 10 1 3.16

100 2 200 4 10

1000 3 3000 9 31.6

10000 4 40000 16 100

Order the functions by their growth rate

log
10

(n) < log2

10
(n) <

√
n < n < n log

10
(n) < n

2
< n

3
< 2n

< n!
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Power of Growing Exponentially

from http://www.ideum.com/portfolio

➣ The king owns Shashi: 10, 000, 000, 000, 000, 000, 000 grains of rice.
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Asymptotic Notations for Orders of Growth

➣ Ignore constant factors

➣ Ignore small input sizes

➣ Focus on order of growth

� O(g(n)): a set of functions f(n) that grow no faster than g(n).

� Ω(g(n)): a set of functions f(n) that grow at least as fast as g(n).

� Θ(g(n)): a set of functions f(n) that grow at the same rate as g(n).
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Asymptotic Notations

� O(g(n)) := {f(n) | there exist positive constants c and n0 such that 0 ≤ f(n) ≤ c · g(n)

for all n ≥ n0 }.

f(n) ∈ O(g(n))

f(n) grow no faster than g(n).

� Ω(g(n)) := {f(n) | there exist positive constants c and n0 such that 0 ≤ c · g(n) ≤ f(n)

for all n ≥ n0 }.

f(n) ∈ Ω(g(n))

f(n) grows at least as fast as g(n).

� Θ(g(n)) := {f(n) | there exist positive constants c1, c2 , and n0 such that

c1 · g(n) ≤ f(n) ≤ c2 · g(n) for all n ≥ n0 }.

f(n) ∈ Θ(g(n))

f(n) grows at the same rate as g(n).
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Asymptotic Notations

c1g(n)

c2g(n)

f(n)f(n)

f(n)

n0n0

n0

nn

n

cg(n)

cg(n)

f(n) ∈ Θ(g(n))

f(n) ∈ O(g(n)) f(n) ∈ Ω(g(n))
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Examples

➣ O(g(n)) := {f(n) | there exist positive constants c and n0 such that 0 ≤ f(n) ≤ c · g(n)

for all n ≥ n0 }.

� 2n2 − 5n + 1 ∈ O(n2)

� 2n + n100 − 2 ∈ O(n!)

� 2n + 6 /∈ O(log n)

➣ Ω(g(n)) := {f(n) | there exist positive constants c and n0 such that 0 ≤ c · g(n) ≤ f(n)

for all n ≥ n0 }.

➣ For any 2 functions f(n) and g(n), f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and

f(n) = Ω(g(n)).
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Examples

➣ O(g(n)) := {f(n) | there exist positive constants c and n0 such that 0 ≤ f(n) ≤ c · g(n)

for all n ≥ n0 }.
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� 2n + n100 − 2 /∈ Ω(n!)

� 2n + 6 ∈ Ω(log n)
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Examples

➣ O(g(n)) := {f(n) | there exist positive constants c and n0 such that 0 ≤ f(n) ≤ c · g(n)

for all n ≥ n0 }.

� 2n2 − 5n + 1 ∈ O(n2)

� 2n + n100 − 2 ∈ O(n!)

� 2n + 6 /∈ O(log n)

➣ Ω(g(n)) := {f(n) | there exist positive constants c and n0 such that 0 ≤ c · g(n) ≤ f(n)

for all n ≥ n0 }.

� 2n2 − 5n + 1 ∈ Ω(n2)

� 2n + n100 − 2 /∈ Ω(n!)

� 2n + 6 ∈ Ω(log n)

➣ For any 2 functions f(n) and g(n), f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and

f(n) = Ω(g(n)).

� 2n2 − 5n + 1 ∈ Θ(n2)

� 2n + n100 − 2 /∈ Θ(n!)

� 2n + 6 /∈ Θ(log n)
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Establish Order of Growth

lim
n→∞

f(n)

g(n)
=

⎧⎪⎪⎨
⎪⎪⎩

0 f(n) has a smaller order of growth than g(n)

c > 0 f(n) has the same order of growth as g(n)

∞ f(n) has a larger order of growth than g(n)

2n2 − 5n + 1 vs. n2

2n + n100 − 2 vs. n!

2n + 6 vs. log n
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Establish Order of Growth

� L’Hopital’s rule

If limn→∞ f(n) = limn→∞ g(n) = ∞ and the derivatives f ′ and g′

exist, then

lim
n→∞

f(n)

g(n)
= lim

n→∞

f ′(n)

g′(n)

� Stirling’s formula

n! ≈
√

2πn(
n

e
)n

where e is the natural logarithm, e ≈ 2.718. π ≈ 3.1415.

√
2πn(

n

e
)n ≤ n! ≤

√
2πn(

n

e
)n+ 1

12n
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Some Facts on Growth of Order

� A weak version of Stirling’s formula

(
n

3
)n < n! < (

n

2
)n, if n ≥ 6.

� Another view

lnn! ≈ n lnn − n +
ln n

2
+

ln 2π

2

� 11! and 20! are the largest factorials stored in 32-bit and 64-bit computers.

(20! = 2432902008176640000)

� googol is 10100 and 70! ≈ 1.198 googol.

Consider arranging 70 people in a row.

� A googol is greater than the number of atoms in the observable universe,

which has been variously estimated from 1079 up to 1081.
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Exercises

2n2 − 5n + 1 vs. n2

2n + n100 − 2 vs. n!

2n + 6 vs. log n
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Exercises

➣ All logarithmic functions loga n belong to the same class Θ(log n) no matter

what the logarithmic base a > 1 is.

➣ All polynomials of the same degree k belong to the same class

aknk + ak−1n
k−1 + · · · + a1n + a0 ∈ Θ(nk).

➣ Exponential functions an have different orders of growth for different a’s, i.e.,

2n /∈ Θ(3n).

➣ Θ(log n) < Θ(na) < Θ(an) < Θ(n!) < Θ(nn), where a > 1.
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