CS483-03 Asymptotic Notations for Algorithm Analysis

Instructor: Fei Li

Room 443 ST II
Office hours: Tue. \& Thur. 4:30pm - 5:30pm or by appointments
lifei@cs.gmu.edu with subject: CS483
http://www.cs.gmu.edu/~ lifei/teaching/cs483_fall07/
Some of this lecture note is based on Dr. J.M. Lien's lecture notes.

Outline

- Review
- Order of growth
$\star O, \Omega$ and Θ
- Examples and exercises

Review

In last class

- Analysis framework
- Input size
- Basic operation
- Running time

$$
T(n) \approx c_{o p} \cdot C(n)
$$

where

- n is the input size
- $C(n)$ is the total number of basic operations for input of size n.
- $c_{o p}$ is the time needed to execute one single basic operation.
- Worst-case, best-case, average-case

Outline

- Review
- Order of growth
- O, Ω and Θ
- Examples and exercises

Orders of Growth

\wedge Running time $T(n)$

$$
T(n) \approx c_{o p} \cdot C(n)
$$

where n is the input size, $C(n)$ is the total number of basic operations for input of size n, and $c_{o p}$ is the time needed to execute one single basic operation.
\checkmark Example 1
Given that $C(n)=\frac{1}{2} n(n-1)$, how much the performance will be affected if the input size n is doubled?

$$
\text { growth }=\frac{T(2 n)}{T(n)} \approx \frac{c_{o p} \cdot C(2 n)}{c_{o p} \cdot C(n)}=\frac{4 n-2}{n-1} \approx 4
$$

Orders of Growth

Running time $T(n)$

$$
T(n) \approx c_{o p} \cdot C(n)
$$

where n is the input size, $C(n)$ is the total number of basic operations for input of size n, and $c_{o p}$ is the time needed to execute one single basic operation.
\checkmark Example 2
Given an algorithm A with $C_{A}(n)=10 \cdot n$ and another algorithm B with $C_{B}(n)=\frac{1}{2} n(n-1)$, which algorithm is better?

$$
\text { Answer }= \begin{cases}B, & \text { if } n \leq 21 \\ A, & \text { if } n>21\end{cases}
$$

Orders of Growth

- Some of the commonly seen functions representing the number of the basic operations $C(n)$

1. n (linear)
2. n^{2} (quadratic)
3. n^{3} (cubic)
4. $\log _{10}(n)$ (logarithmic)
5. $n \log _{10}(n)(n-\log -n)$
6. $\log _{10}^{2}(n)$ (quadratic of \log)
7. \sqrt{n} (square root of n)
8. 2^{n} (exponential)
9. n ! (factorial function of $n, 1808$ by Christian Kramp)

- Can you order them by their growth rate?

Orders of Growth

n	n^{2}	n^{3}	2^{n}	$n!$
10	10^{2}	10^{3}	1024	3.6×10^{6}
100	10^{4}	10^{6}	1.3×10^{30}	9.3×10^{157}
1000	10^{6}	10^{9}	1.1×10^{301}	
10000	10^{8}	10^{12}		

n	$\log _{10}(n)$	$n \log _{10}(n)$	$\log _{10}^{2}(n)$	\sqrt{n}
10	1	10	1	3.16
100	2	200	4	10
1000	3	3000	9	31.6
10000	4	40000	16	100

Order the functions by their growth rate

$$
\log _{10}(n)<\log _{10}^{2}(n)<\sqrt{n}<n<n \log _{10}(n)<n^{2}<n^{3}<2^{n}<n!
$$

Power of Growing Exponentially

from http://www.ideum.com/portfolio
∇ The king owns Shashi: $10,000,000,000,000,000,000$ grains of rice.

Outline

\star Review

- Order of growth
- O, Ω and Θ
\star Examples and exercises

Asymptotic Notations for Orders of Growth

- Ignore constant factors
- Ignore small input sizes
- Focus on order of growth
- $O(g(n))$: a set of functions $f(n)$ that grow no faster than $g(n)$.
- $\Omega(g(n))$: a set of functions $f(n)$ that grow at least as fast as $g(n)$.
- $\Theta(g(n))$: a set of functions $f(n)$ that grow at the same rate as $g(n)$.

Asymptotic Notations

- $O(g(n)):=\left\{f(n) \mid\right.$ there exist positive constants c and n_{0} such that $0 \leq f(n) \leq c \cdot g(n)$ for all $\left.n \geq n_{0}\right\}$.

$$
f(n) \in O(g(n))
$$

$f(n)$ grow no faster than $g(n)$.

- $\Omega(g(n)):=\left\{f(n) \mid\right.$ there exist positive constants c and n_{0} such that $0 \leq c \cdot g(n) \leq f(n)$ for all $\left.n \geq n_{0}\right\}$.

$$
f(n) \in \Omega(g(n))
$$

$f(n)$ grows at least as fast as $g(n)$.

- $\Theta(g(n)):=\left\{f(n) \mid\right.$ there exist positive constants c_{1}, c_{2}, and n_{0} such that $c_{1} \cdot g(n) \leq f(n) \leq c_{2} \cdot g(n)$ for all $\left.n \geq n_{0}\right\}$.

$$
f(n) \in \Theta(g(n))
$$

$f(n)$ grows at the same rate as $g(n)$.

Examples

$\star O(g(n)):=\left\{f(n) \mid\right.$ there exist positive constants c and n_{0} such that $0 \leq f(n) \leq c \cdot g(n)$ for all $\left.n \geq n_{0}\right\}$.

- $2 n^{2}-5 n+1 \in O\left(n^{2}\right)$
- $2^{n}+n^{100}-2 \in O(n!)$
- $2 n+6 \notin O(\log n)$
$\vee \Omega(g(n)):=\left\{f(n) \mid\right.$ there exist positive constants c and n_{0} such that $0 \leq c \cdot g(n) \leq f(n)$ for all $\left.n \geq n_{0}\right\}$.
- For any 2 functions $f(n)$ and $g(n), f(n)=\Theta(g(n))$ if and only if $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$.

Examples

$\star O(g(n)):=\left\{f(n) \mid\right.$ there exist positive constants c and n_{0} such that $0 \leq f(n) \leq c \cdot g(n)$ for all $\left.n \geq n_{0}\right\}$.

- $2 n^{2}-5 n+1 \in O\left(n^{2}\right)$
- $2^{n}+n^{100}-2 \in O(n!)$
- $2 n+6 \notin O(\log n)$
$\vee \Omega(g(n)):=\left\{f(n) \mid\right.$ there exist positive constants c and n_{0} such that $0 \leq c \cdot g(n) \leq f(n)$ for all $\left.n \geq n_{0}\right\}$.
- $2 n^{2}-5 n+1 \in \Omega\left(n^{2}\right)$
- $2^{n}+n^{100}-2 \notin \Omega(n!)$
- $2 n+6 \in \Omega(\log n)$
- For any 2 functions $f(n)$ and $g(n), f(n)=\Theta(g(n))$ if and only if $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$.

Examples

- $O(g(n)):=\left\{f(n) \mid\right.$ there exist positive constants c and n_{0} such that $0 \leq f(n) \leq c \cdot g(n)$ for all $\left.n \geq n_{0}\right\}$.
- $2 n^{2}-5 n+1 \in O\left(n^{2}\right)$
- $2^{n}+n^{100}-2 \in O(n!)$
- $2 n+6 \notin O(\log n)$
$\wedge \Omega(g(n)):=\left\{f(n) \mid\right.$ there exist positive constants c and n_{0} such that $0 \leq c \cdot g(n) \leq f(n)$ for all $\left.n \geq n_{0}\right\}$.
- $2 n^{2}-5 n+1 \in \Omega\left(n^{2}\right)$
- $2^{n}+n^{100}-2 \notin \Omega(n!)$
- $2 n+6 \in \Omega(\log n)$
\star For any 2 functions $f(n)$ and $g(n), f(n)=\Theta(g(n))$ if and only if $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$.
- $2 n^{2}-5 n+1 \in \Theta\left(n^{2}\right)$
- $2^{n}+n^{100}-2 \notin \Theta(n!)$
- $2 n+6 \notin \Theta(\log n)$

Establish Order of Growth

$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}= \begin{cases}0 & f(n) \text { has a smaller order of growth than } g(n) \\ c>0 & f(n) \text { has the same order of growth as } g(n) \\ \infty & f(n) \text { has a larger order of growth than } g(n)\end{cases}$

$$
\begin{array}{rll}
2 n^{2}-5 n+1 & \text { vs. } & n^{2} \\
2^{n}+n^{100}-2 & \text { vs. } & n! \\
2 n+6 & \text { vs. } & \log n
\end{array}
$$

Establish Order of Growth

- L'Hopital's rule

If $\lim _{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} g(n)=\infty$ and the derivatives f^{\prime} and g^{\prime} exist, then

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
$$

- Stirling's formula

$$
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

where e is the natural logarithm, $e \approx 2.718 . \pi \approx 3.1415$.

$$
\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \leq n!\leq \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n+\frac{1}{12 n}}
$$

Some Facts on Growth of Order

- A weak version of Stirling's formula

$$
\left(\frac{n}{3}\right)^{n}<n!<\left(\frac{n}{2}\right)^{n}, \text { if } n \geq 6
$$

- Another view

$$
\ln n!\approx n \ln n-n+\frac{\ln n}{2}+\frac{\ln 2 \pi}{2}
$$

- 11 ! and 20 ! are the largest factorials stored in 32 -bit and 64 -bit computers.
$(20!=2432902008176640000)$
- googol is 10^{100} and 70 ! ≈ 1.198 googol.

Consider arranging 70 people in a row.

- A googol is greater than the number of atoms in the observable universe, which has been variously estimated from 10^{79} up to 10^{81}.

Exercises

$$
\begin{array}{rll}
2 n^{2}-5 n+1 & \text { vs. } & n^{2} \\
2^{n}+n^{100}-2 & \text { vs. } & n! \\
2 n+6 & \text { vs. } & \log n
\end{array}
$$

Exercises

∇ All logarithmic functions $\log _{a} n$ belong to the same class $\Theta(\log n)$ no matter what the logarithmic base $a>1$ is.
\star All polynomials of the same degree k belong to the same class
$a_{k} n^{k}+a_{k-1} n^{k-1}+\cdots+a_{1} n+a_{0} \in \Theta\left(n^{k}\right)$.

- Exponential functions a^{n} have different orders of growth for different a 's, i.e., $2^{n} \notin \Theta\left(3^{n}\right)$.
$\nabla \Theta(\log n)<\Theta\left(n^{a}\right)<\Theta\left(a^{n}\right)<\Theta(n!)<\Theta\left(n^{n}\right)$, where $a>1$.

