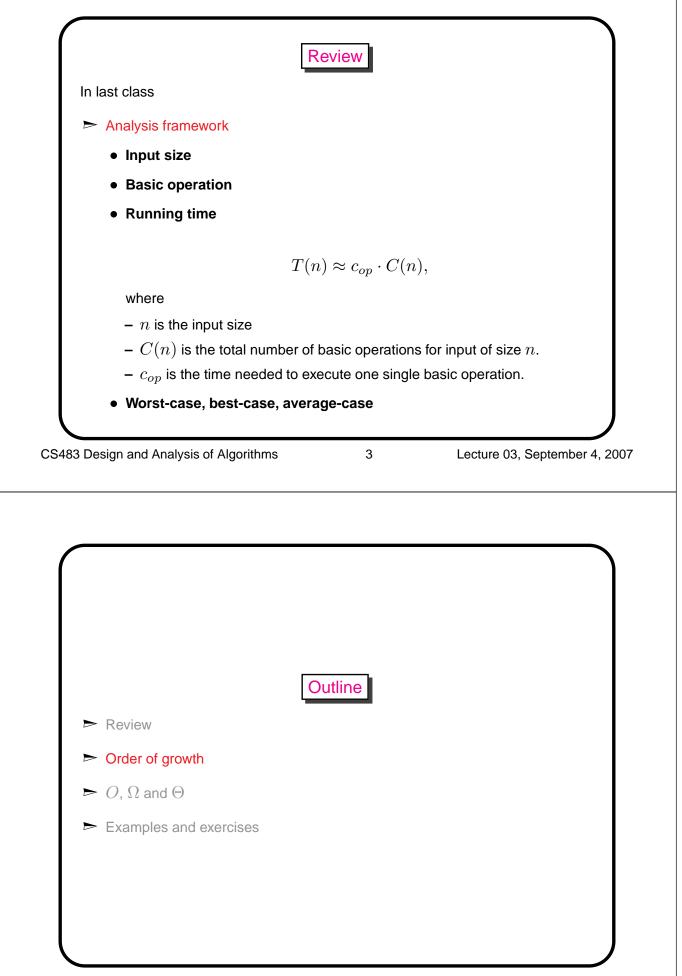
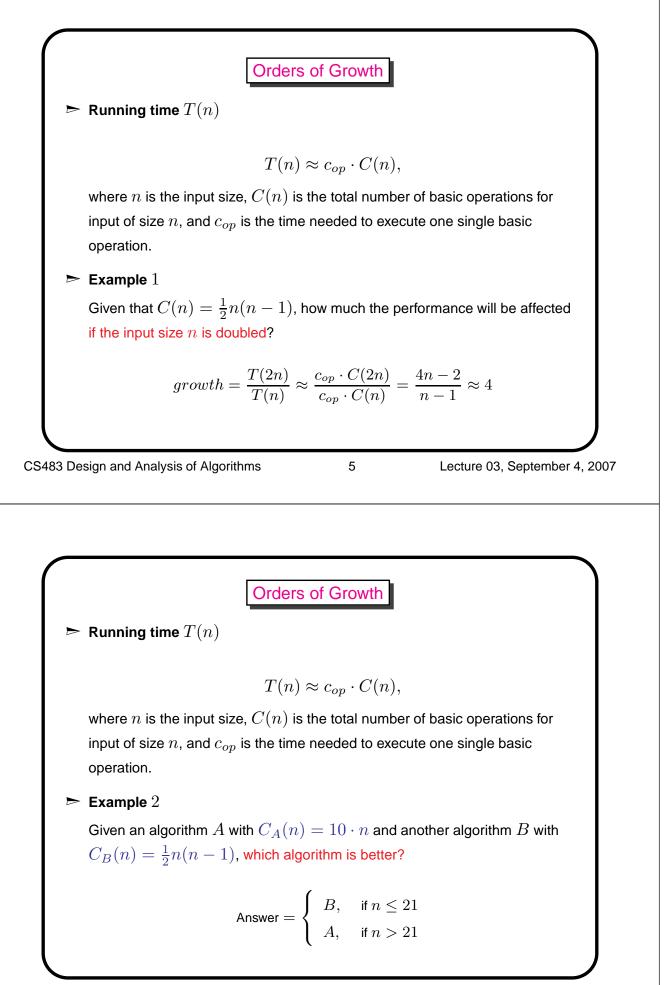
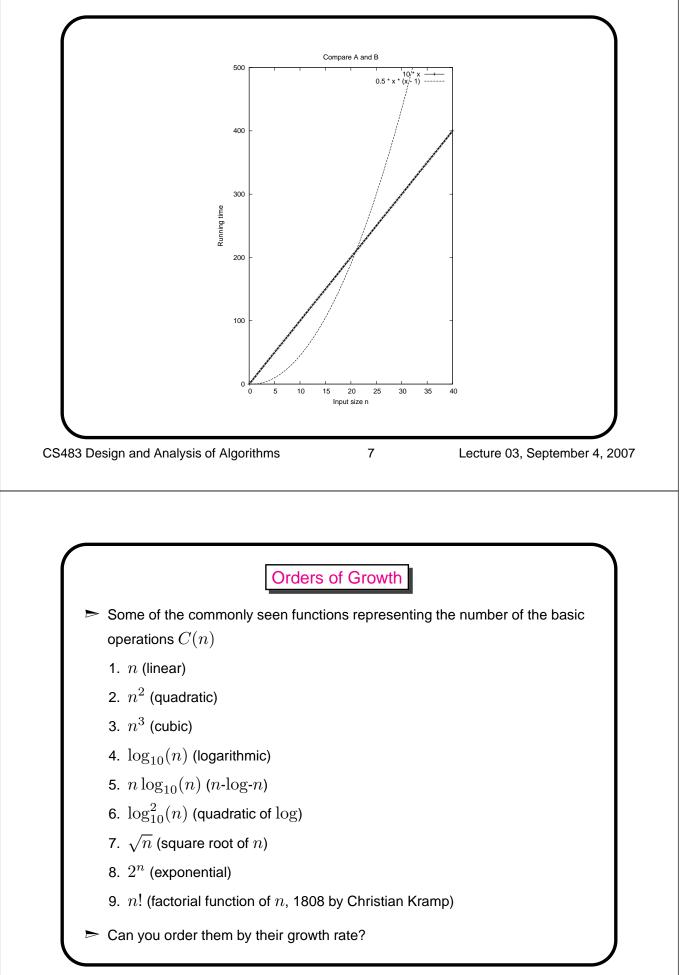
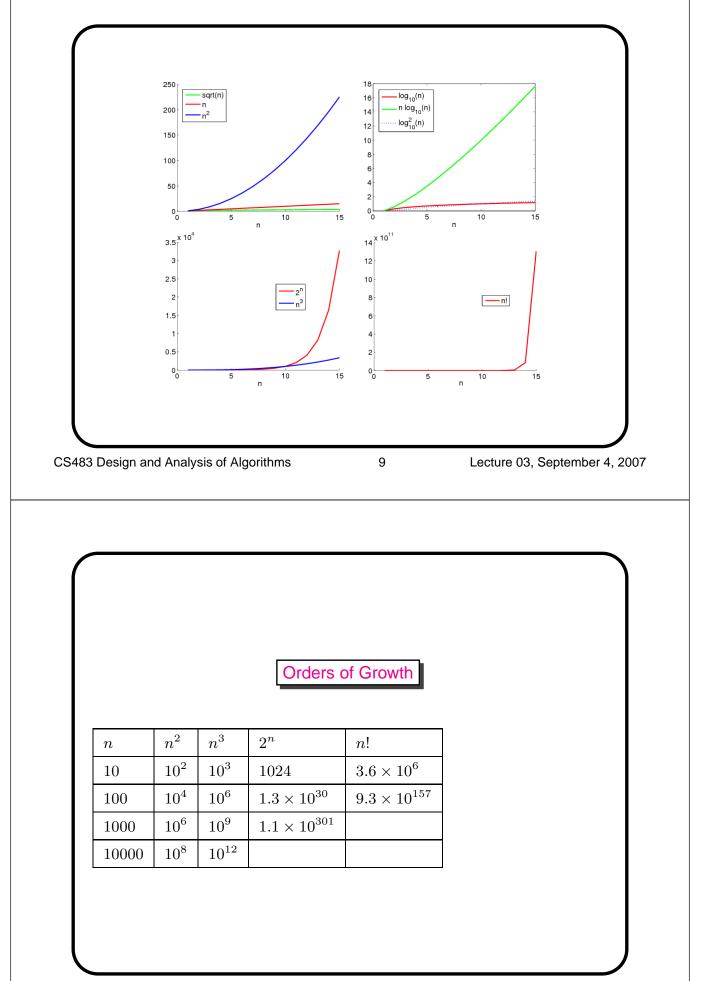
CS483-03 /	Asymptotic Notations for Algorithm Analysis
	Instructor: Fei Li
	Room 443 ST II
Office bo	burs: Tue. & Thur. 4:30pm - 5:30pm or by appointments
	lifei@cs.gmu.edu with subject: CS483
	ww.cs.gmu.edu/~ lifei/teaching/cs483_fall07/
_	his lecture note is based on Dr. J.M. Lien's lecture notes.
3 Design and Analysi	is of Algorithms 1 Lecture 03, September 4, 2
3 Design and Analysi	is of Algorithms 1 Lecture 03, September 4, 2
	is of Algorithms 1 Lecture 03, September 4, 2
► Review	Outline
 Review Order of grow 	Outline
 Review Order of grow O, Ω and Θ 	th
 Order of grow 	th









n	$\log_{10}(n)$	$n\log_{10}(n)$	$\log_{10}^2(n)$	\sqrt{n}
10	1	10	1	3.16
100	2	200	4	10
1000	3	3000	9	31.6
10000	4	40000	16	100

Order the functions by their growth rate

$$\log_{10}(n) < \log_{10}^{2}(n) < \sqrt{n} < n < n \log_{10}(n) < n^{2} < n^{3} < 2^{n} < n!$$

CS483 Design and Analysis of Algorithms

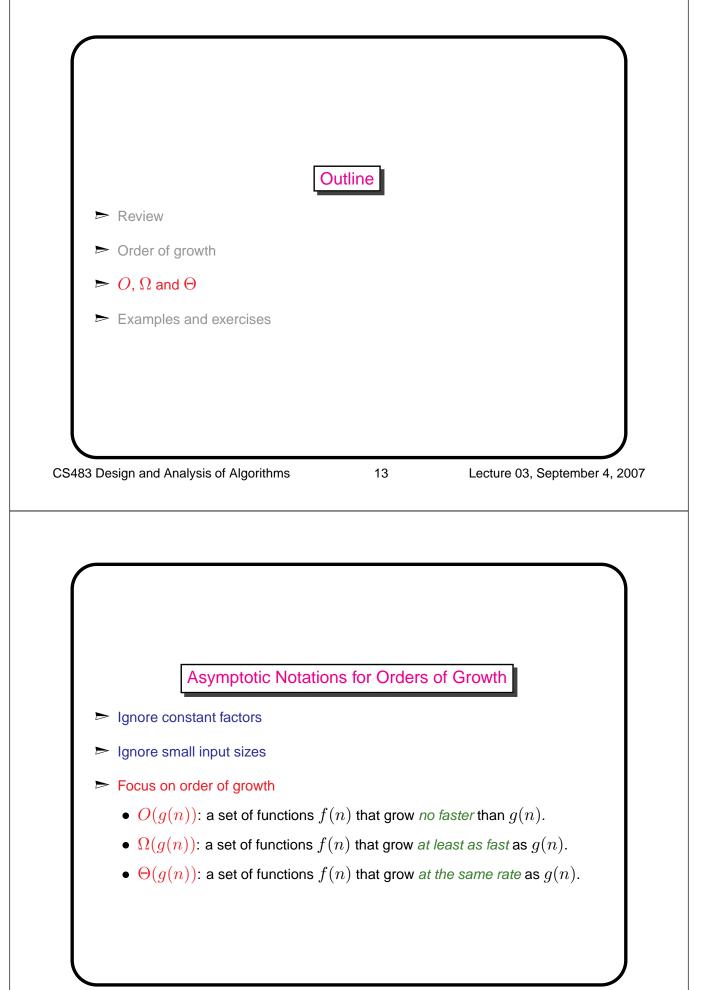
11

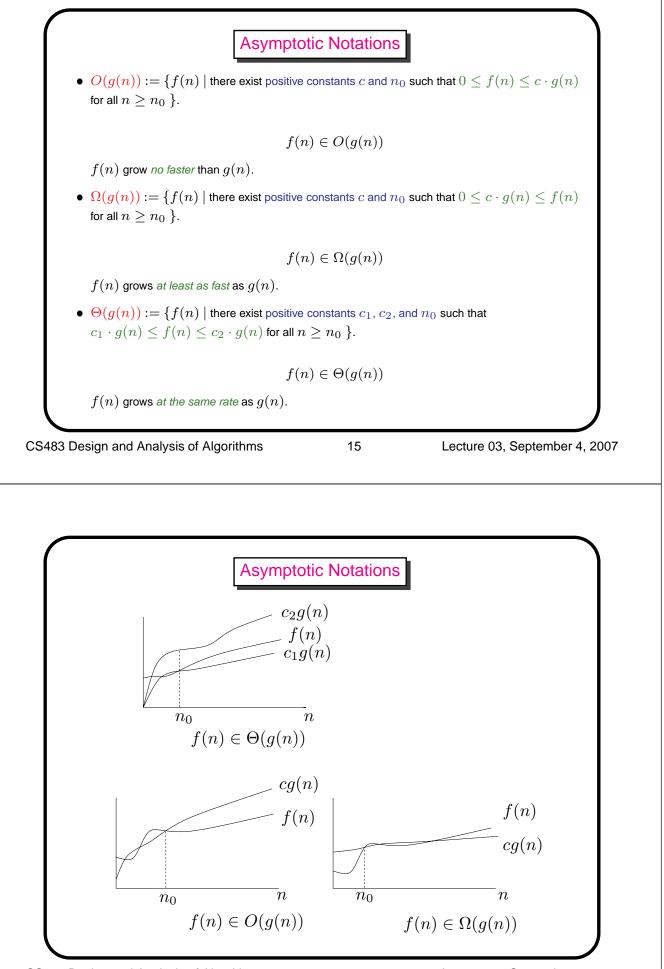
Lecture 03, September 4, 2007

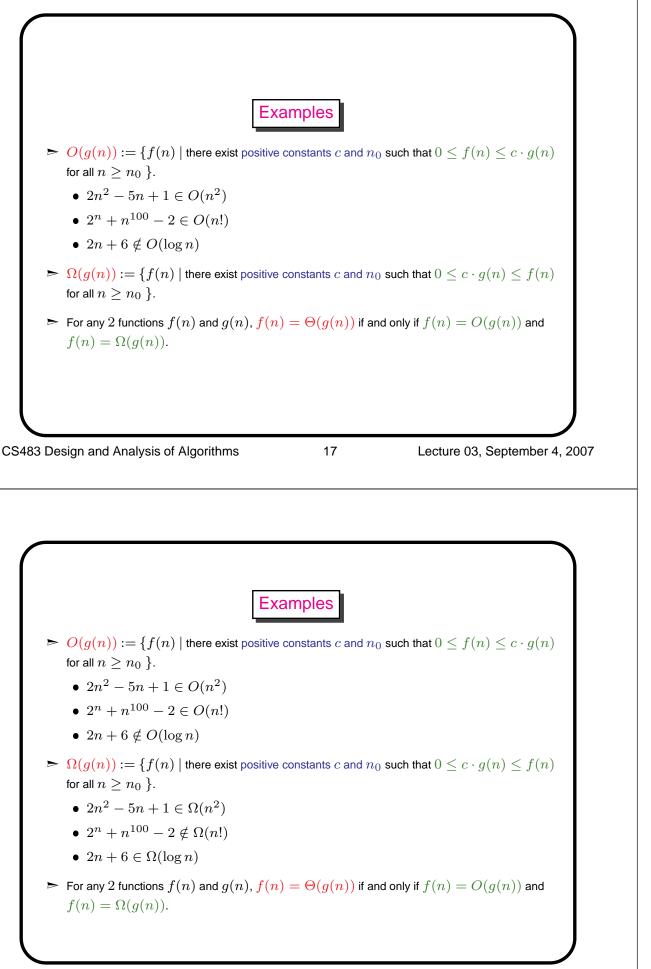
Power of Growing Exponentially

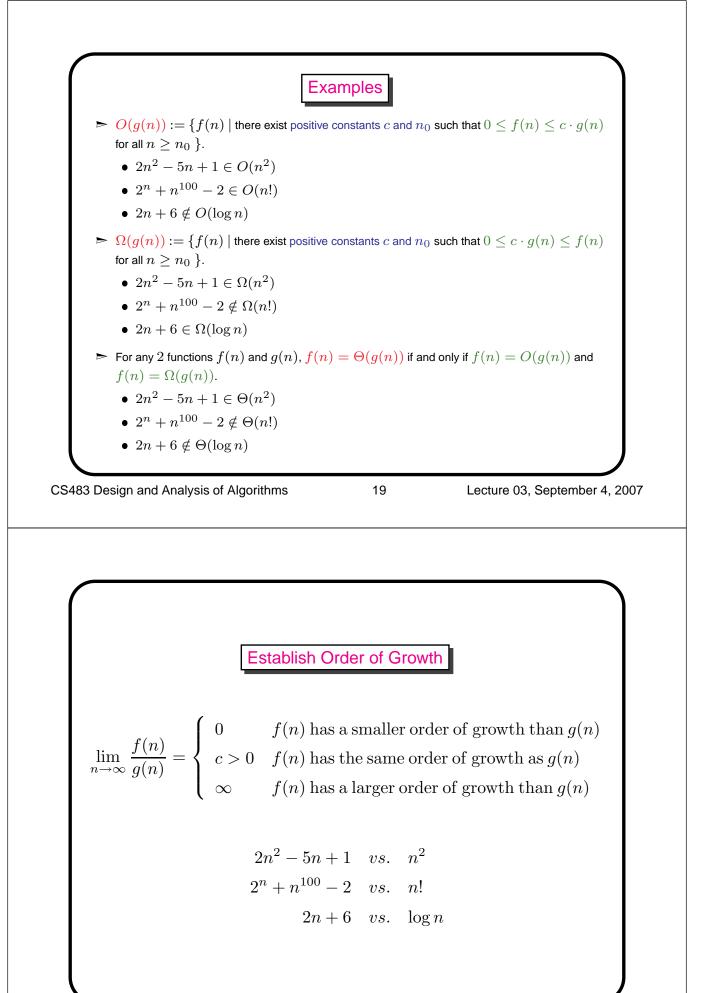
from http://www.ideum.com/portfolio

► The king owns Shashi: 10,000,000,000,000,000,000 grains of rice.









Establish Order of Growth

• L'Hopital's rule

If $\lim_{n\to\infty}f(n)=\lim_{n\to\infty}g(n)=\infty$ and the derivatives f' and g' exist, then

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

• Stirling's formula

$$n! \approx \sqrt{2\pi n} (\frac{n}{e})^n$$

where e is the natural logarithm, $e\approx 2.718.~\pi\approx 3.1415.$

$$\sqrt{2\pi n} (\frac{n}{e})^n \le n! \le \sqrt{2\pi n} (\frac{n}{e})^{n+\frac{1}{12n}}$$

21

CS483 Design and Analysis of Algorithms

Some Facts on Growth of Order • A weak version of Stirling's formula $\left(\frac{n}{3}\right)^n < n! < \left(\frac{n}{2}\right)^n, \text{ if } n \ge 6.$ • Another view $\ln n! \approx n \ln n - n + \frac{\ln n}{2} + \frac{\ln 2\pi}{2}$ • 11! and 20! are the largest factorials stored in 32-bit and 64-bit computers. (20! = 2432902008176640000) • googol is 10¹⁰⁰ and 70! \approx 1.198 googol. Consider arranging 70 people in a row. • A googol is greater than the number of atoms in the observable universe, which has been variously estimated from 10⁷⁹ up to 10⁸¹.

Lecture 03, September 4, 2007

