CS483-03 Asymptotic Notations for Algorithm Analysis

Instructor: Fei Li

Room 443 ST II

Office hours: Tue. & Thur. 4:30pm - 5:30pm or by appointments

lifei@cs.gmu.edu with subject: CS483

http://www.cs.gmu.edu/~ lifei/teaching/cs483_fall07/

Some of this lecture note is based on Dr. J.M. Lien's lecture notes.

Outline

- > Review
- > Order of growth
- ightharpoonup O, Ω and Θ
- > Examples and exercises

Review

In last class

- Analysis framework
 - Input size
 - Basic operation
 - Running time

$$T(n) \approx c_{op} \cdot C(n),$$

where

- n is the input size
- C(n) is the total number of basic operations for input of size n.
- c_{op} is the time needed to execute one single basic operation.
- Worst-case, best-case, average-case

Outline

- > Review
- > Order of growth
- ightharpoonup O, Ω and Θ
- > Examples and exercises

ightharpoonup Running time T(n)

$$T(n) \approx c_{op} \cdot C(n),$$

where n is the input size, C(n) is the total number of basic operations for input of size n, and c_{op} is the time needed to execute one single basic operation.

ightharpoonup Example 1

Given that $C(n)=\frac{1}{2}n(n-1)$, how much the performance will be affected if the input size n is doubled?

$$growth = \frac{T(2n)}{T(n)} \approx \frac{c_{op} \cdot C(2n)}{c_{op} \cdot C(n)} = \frac{4n-2}{n-1} \approx 4$$

ightharpoonup Running time T(n)

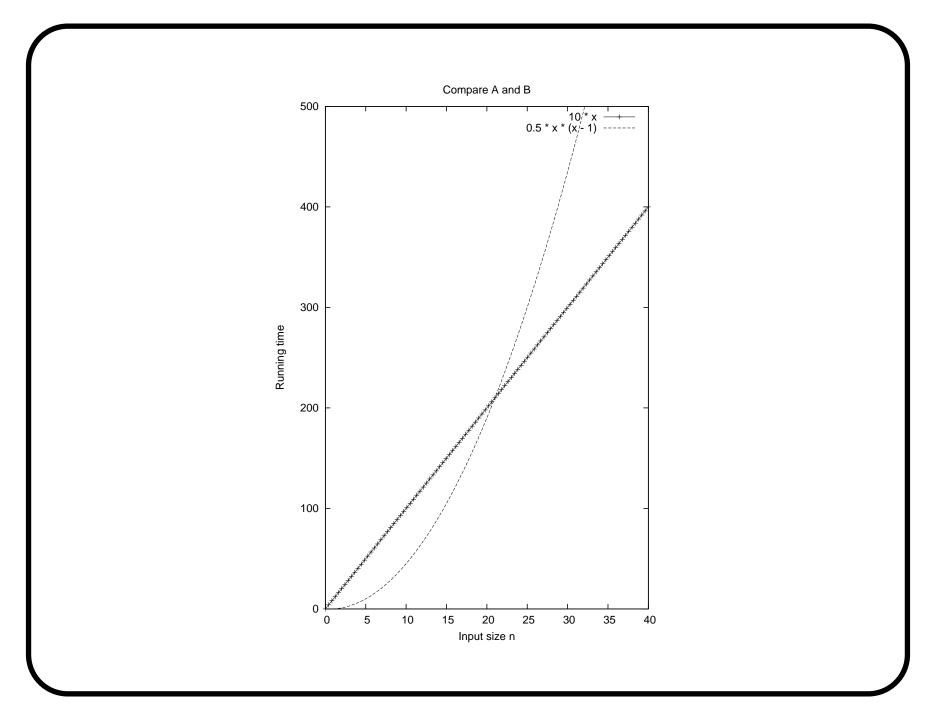
$$T(n) \approx c_{op} \cdot C(n),$$

where n is the input size, C(n) is the total number of basic operations for input of size n, and c_{op} is the time needed to execute one single basic operation.

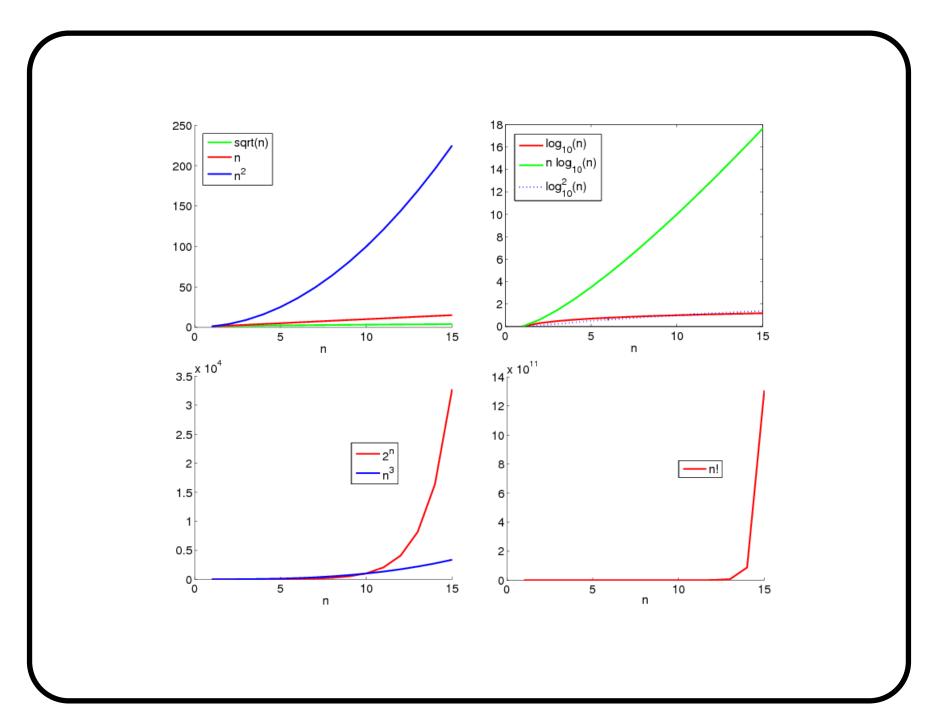
\triangleright Example 2

Given an algorithm A with $C_A(n)=10\cdot n$ and another algorithm B with $C_B(n)=\frac{1}{2}n(n-1)$, which algorithm is better?

$$\mathsf{Answer} = \left\{ \begin{array}{ll} B, & \text{if } n \leq 21 \\ A, & \text{if } n > 21 \end{array} \right.$$



- ${\ensuremath{>\!\!\!>}}$ Some of the commonly seen functions representing the number of the basic operations C(n)
 - 1. n (linear)
 - 2. n^2 (quadratic)
 - 3. n^3 (cubic)
 - 4. $\log_{10}(n)$ (logarithmic)
 - 5. $n \log_{10}(n)$ (n-log-n)
 - 6. $\log_{10}^2(n)$ (quadratic of \log)
 - 7. \sqrt{n} (square root of n)
 - 8. 2^n (exponential)
 - 9. n! (factorial function of n, 1808 by Christian Kramp)
- Can you order them by their growth rate?



n	n^2	n^3	2^n	n!
10	10^{2}	10^{3}	1024	3.6×10^6
100	10^{4}	10^{6}	1.3×10^{30}	9.3×10^{157}
1000	10^{6}	10^{9}	1.1×10^{301}	
10000	10 ⁸	10^{12}		

n	$\log_{10}(n)$	$n\log_{10}(n)$	$\log_{10}^2(n)$	\sqrt{n}
10	1	10	1	3.16
100	2	200	4	10
1000	3	3000	9	31.6
10000	4	40000	16	100

Order the functions by their growth rate

$$\log_{10}(n) < \log_{10}^{2}(n) < \sqrt{n} < n < n \log_{10}(n) < n^{2} < n^{3} < 2^{n} < n!$$

Power of Growing Exponentially

from http://www.ideum.com/portfolio

 \rightarrow The king owns Shashi: 10,000,000,000,000,000,000 grains of rice.

Outline

- > Review
- > Order of growth
- ightharpoonup O, Ω and Θ
- > Examples and exercises

Asymptotic Notations for Orders of Growth

- ➤ Ignore constant factors
- ➤ Ignore small input sizes
- > Focus on order of growth
 - O(g(n)): a set of functions f(n) that grow *no faster* than g(n).
 - $\Omega(g(n))$: a set of functions f(n) that grow at least as fast as g(n).
 - \bullet $\Theta(g(n))$: a set of functions f(n) that grow at the same rate as g(n).

Asymptotic Notations

• $O(g(n)) := \{f(n) \mid \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le c \cdot g(n) \text{ for all } n \ge n_0 \}.$

$$f(n) \in O(g(n))$$

f(n) grow *no faster* than g(n).

• $\Omega(g(n)) := \{f(n) \mid \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le c \cdot g(n) \le f(n) \}$ for all $n \ge n_0 \}$.

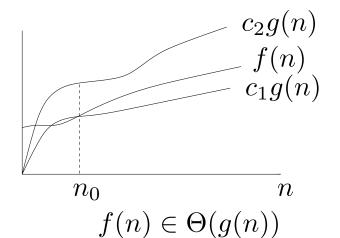
$$f(n)\in\Omega(g(n))$$

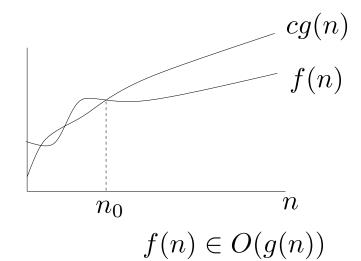
f(n) grows at least as fast as g(n).

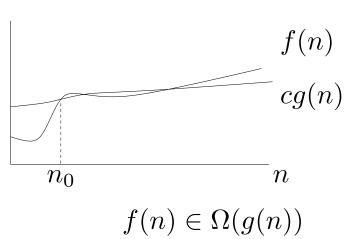
• $\Theta(g(n)) := \{f(n) \mid \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \text{ for all } n \geq n_0 \}.$

$$f(n) \in \Theta(g(n))$$

f(n) grows at the same rate as g(n).







Examples

- $ightharpoonup O(g(n)) := \{f(n) \mid \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq c \cdot g(n) \text{ for all } n \geq n_0 \}.$
 - $2n^2 5n + 1 \in O(n^2)$
 - $2^n + n^{100} 2 \in O(n!)$
 - $2n + 6 \notin O(\log n)$
- $ightharpoonup \Omega(g(n)) := \{f(n) \mid \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq c \cdot g(n) \leq f(n) \}$ for all $n \geq n_0 \}$.
- For any 2 functions f(n) and g(n), $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

Examples

- $ightharpoonup O(g(n)) := \{f(n) \mid \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq c \cdot g(n) \text{ for all } n \geq n_0 \ \}.$
 - $2n^2 5n + 1 \in O(n^2)$
 - $2^n + n^{100} 2 \in O(n!)$
 - $2n + 6 \notin O(\log n)$
- $ightharpoonup \Omega(g(n)) := \{f(n) \mid \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq c \cdot g(n) \leq f(n) \}$ for all $n \geq n_0 \}$.
 - $2n^2 5n + 1 \in \Omega(n^2)$
 - $2^n + n^{100} 2 \notin \Omega(n!)$
 - $2n + 6 \in \Omega(\log n)$
- For any 2 functions f(n) and g(n), $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

Examples

- > $O(g(n)) := \{f(n) \mid \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le c \cdot g(n) \}$ for all $n \ge n_0 \}$.
 - $2n^2 5n + 1 \in O(n^2)$
 - $2^n + n^{100} 2 \in O(n!)$
 - $2n + 6 \notin O(\log n)$
- $ightharpoonup \Omega(g(n)) := \{f(n) \mid \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq c \cdot g(n) \leq f(n) \}$ for all $n \geq n_0 \}$.
 - $2n^2 5n + 1 \in \Omega(n^2)$
 - $2^n + n^{100} 2 \notin \Omega(n!)$
 - $2n + 6 \in \Omega(\log n)$
- For any 2 functions f(n) and g(n), $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.
 - $2n^2 5n + 1 \in \Theta(n^2)$
 - $2^n + n^{100} 2 \notin \Theta(n!)$
 - $2n + 6 \notin \Theta(\log n)$

Establish Order of Growth

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \begin{cases} 0 & f(n) \text{ has a smaller order of growth than } g(n) \\ c > 0 & f(n) \text{ has the same order of growth as } g(n) \\ \infty & f(n) \text{ has a larger order of growth than } g(n) \end{cases}$$

$$2n^{2} - 5n + 1$$
 $vs.$ n^{2}
 $2^{n} + n^{100} - 2$ $vs.$ $n!$
 $2n + 6$ $vs.$ $\log n$

Establish Order of Growth

• L'Hopital's rule

If $\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n) = \infty$ and the derivatives f' and g' exist, then

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

• Stirling's formula

$$n! \approx \sqrt{2\pi n} (\frac{n}{e})^n$$

where e is the natural logarithm, $e \approx 2.718$. $\pi \approx 3.1415$.

$$\sqrt{2\pi n} \left(\frac{n}{e}\right)^n \le n! \le \sqrt{2\pi n} \left(\frac{n}{e}\right)^{n + \frac{1}{12n}}$$

Some Facts on Growth of Order

A weak version of Stirling's formula

$$(\frac{n}{3})^n < n! < (\frac{n}{2})^n$$
, if $n \ge 6$.

Another view

$$\ln n! \approx n \ln n - n + \frac{\ln n}{2} + \frac{\ln 2\pi}{2}$$

- 11! and 20! are the largest factorials stored in 32-bit and 64-bit computers. (20! = 2432902008176640000)
- googol is 10^{100} and $70! \approx 1.198$ googol. Consider arranging 70 people in a row.
- A googol is greater than the number of atoms in the observable universe, which has been variously estimated from 10^{79} up to 10^{81} .

Exercises

$$2n^{2} - 5n + 1$$
 $vs.$ n^{2}
 $2^{n} + n^{100} - 2$ $vs.$ $n!$
 $2n + 6$ $vs.$ $\log n$

Exercises

- ightharpoonup All logarithmic functions $\log_a n$ belong to the same class $\Theta(\log n)$ no matter what the logarithmic base a>1 is.
- ightharpoonup All polynomials of the same degree k belong to the same class $a_k n^k + a_{k-1} n^{k-1} + \cdots + a_1 n + a_0 \in \Theta(n^k)$.
- ightharpoonup Exponential functions a^n have different orders of growth for different a's, i.e., $2^n \notin \Theta(3^n)$.
- $> \Theta(\log n) < \Theta(n^a) < \Theta(a^n) < \Theta(n!) < \Theta(n^n)$, where a > 1.