CS483-02 Asymptotic Notations for Algorithm Analysis

Instructor: Fei Li

Room 443 ST II

Office hours: Tue. & Thur. 4:30pm - 5:30pm or by appointments

lifei@cs.gmu.edu with subject: CS483

http://www.cs.gmu.edu/~ lifei/teaching/cs483_fall07/

This lecture note is based on Dr. J.M. Lien's lecture notes.

> Review

- ► Time efficiency
- ➤ Worst-case, best-case, and average case
- > Order of growth
- \succ O, Ω and Θ
- ➤ Examples and exercises

In last class

- \succ What is an algorithm?
 - Definition and properties
- \succ Why do we study algorithms?
 - Theoretical importance and practical importance
- There may exist multiple algorithms for the same problem. (Refer to "Greatest Common Divisor" Problem.)

Review

In last class

- \succ What is an algorithm?
 - Its definition and properties
- \succ Why do we study algorithms?
 - Theoretical importance and practical importance

There may exist multiple algorithms for the same problem. (Refer to "Greatest Common Divisor" Problem.)

In this class

 \succ \rightarrow Given an algorithm, how do we analyze it?

- Is the algorithm correct?
- What is its running time?

(similar for space efficiency analysis)

Example: Greatest Common Divisor gcd(m,n)

3 algorithms calculating gcd(m,n). Assume m > n > 0.

1. From gcd(m, n)'s definition: check each number in decreasing order by 1 starting from $\min\{m, n\}$.

 $n, n - 1, n - 2, \dots$

- 2. From gcd(m, n)'s definition and prime numbers definition: gcd(m, n) is the product of all common factors of m and n.
 - List all prime numbers $\leq n$. (Sieve method)
 - Prime number factorization of m and n.
 - Multiply all the common factors.
- 3. Euclid's algorithm: $gcd(m, n) = gcd(n, m \mod n)$

Example: Greatest Common Divisor gcd(m,n)

3 algorithms calculating gcd(m, n). Assume m > n > 0.

- 1. From gcd(m, n)'s definition: check each number in decreasing order by 1 since $\min\{m, n\}$.
 - $n, n-1, n-2, \ldots$
- 2. From gcd(m, n)'s definition and prime numbers definition: gcd(m, n) is the product of all common factors of m and n.
 - List all prime numbers $\leq n$. (Sieve method)
 - Prime number factorization of m and n.
 - Multiply all the common factors.
- 3. Euclid's algorithm: $gcd(m, n) = gcd(n, m \mod n)$

Question: Which one runs the fastest?

Outline

> Review

> Time efficiency

- ➤ Worst-case, best-case, and average case
- > Order of growth
- \succ O, Ω and Θ
- ➤ Examples and exercises

Empirical Analysis vs. Theoretical Analysis of Time Efficiency

 \succ Approach of estimating the running time

- 1. Select a typical sample of inputs
- 2. Count actual number of basic executions or record the running time
- 3. Analyze the collected data

Empirical Analysis vs. Theoretical Analysis of Time Efficiency

 \succ Approach of estimating the running time

- 1. Select a typical sample of inputs
- 2. Count actual number of basic executions or record the running time
- 3. Analyze the collected data

Drawbacks

- Difficult to decide on how many samples/tests are needed to be done
- Hardware/environmental dependent
- Implementation dependent

Theoretical Analysis of Time Efficiency

≻ Goal

Provide a *machine independent* measurement

Common sense

The size of input is increased \rightarrow algorithms run longer

Theoretical Analysis of Time Efficiency

≻ Goal

Provide a *machine independent* measurement

We are satisfied with this goal.

Common sense

The size of input is increased \rightarrow algorithms run longer

Measurement is based on

- input size
- basic operation
- order of growth of running time

Theoretical Analysis of Time Efficiency

- > Input size
- ➤ Basic operation
- \succ Running time T(n)

$$T(n) \approx c_{op} \cdot C(n),$$

where

- $\bullet \ n$ is the input size
- C(n) is the total number of basic operations for input of size n.
- c_{op} is the time needed to execute one single basic operation.

Worst-case, Best-case, Average-case

- Input size
- Basic operation
- Running time T(n)

$$T(n) \approx c_{op} \cdot C(n),$$

 \succ For some algorithms efficiency depends on form of input:

- Worst case: $C_{worst}(n) \rightarrow \text{maximum over inputs of size } n$
- Best case: $C_{best}(n) \rightarrow \text{minimum over inputs of size } n$
- Average case: $C_{avg}(n) \rightarrow$ "average" over inputs of size n

Algorithm 0.1: gcd(a, b)

for
$$i = \{\min(a, b), \cdots, 1\}$$

do
$$\begin{cases} \text{if } a \mod i = 0 \text{ and } b \mod i = 0 \\ \text{then return } (i) \end{cases}$$

- Input size: $n = \min(a, b)$
- Basic operation: $a \mod i$

```
Algorithm 0.2: gcd(a, b)
```

for
$$i = \{\min(a, b), \cdots, 1\}$$

do $\begin{cases} \text{if } a \mod i = 0 \text{ and } b \mod i = 0 \\ \text{then return } (i) \end{cases}$

- Input size: $n = \min(a, b)$
- Basic operation: $a \mod i$
- Worst case (worst case analysis provides an upper bound):
 - When does the worst case happen? (a and b are relatively prime)

–
$$C_{worst}(n) = n$$

```
Algorithm 0.3: gcd(a, b)
```

for
$$i = \{\min(a, b), \cdots, 1\}$$

do $\begin{cases} \text{if } a \mod i = 0 \text{ and } b \mod i = 0 \\ \text{then return } (i) \end{cases}$

• Input size:
$$n = \min(a, b)$$

- Basic operation: $a \mod i$
- Best case
 - When does the best case happen? (gcd(a, b) = min(a, b))

–
$$C_{best}(n) = 1$$

```
Algorithm 0.4: gcd(a, b)
```

for
$$i = \{\min(a, b), \cdots, 1\}$$

do $\begin{cases} \text{if } a \mod i = 0 \text{ and } b \mod i = 0 \\ \text{then return } (i) \end{cases}$

• Input size:
$$n = \min(a, b)$$

- Basic operation: $a \mod i$
- Average case
 - Things need to be pay attention to
 - Number of times of the basic operation will be executed on typical instances

- * NOT the average of worst and best cases
- Expected number of basic operations considered as a random variable under some assumption about the probability distribution of all possible inputs
- Assumptions
 - \ast Assume that a and b are two randomly chosen integers
 - * Assume that all integers have the same probability of being chosen
 - * hint: The probability that an integer i is a and b's greatest common divisor is $P_{a,b}(i) = \frac{6}{\pi^2 i^2}$
 - $\cdot gcd(a, b)$ as the integer i such that (i|a, b) and x := a/i and y := b/i are co-prime.
 - The probability of two integers sharing a factor i is i^{-2} . The probability that two integers are co-prime is $6/\pi^2$.)

Orders of Growth

Input size

Basic operation

 \succ Running time T(n)

$$T(n) \approx c_{op} \cdot C(n),$$

where n is the input size, C(n) is the total number of basic operations for input of size n, and c_{op} is the time needed to execute one single basic operation.

➤ Examples

Given that $C(n) = \frac{1}{2}n(n-1)$, how much the performance will be affected if the input size n is doubled?

$$growth = \frac{T(2n)}{T(n)} \approx \frac{c_{op} \cdot C(2n)}{c_{op} \cdot C(n)} = \frac{4n-2}{n-1} \approx 4$$

CS483 Design and Analysis of Algorithms