
CS483-02 Asymptotic Notations for Algorithm Analysis

Instructor: Fei Li

Room 443 ST II

Office hours: Tue. & Thur. 4:30pm - 5:30pm or by appointments

lifei@cs.gmu.edu with subject: CS483

http://www.cs.gmu.edu/∼ lifei/teaching/cs483 fall07/

This lecture note is based on Dr. J.M. Lien’s lecture notes.

CS483 Design and Analysis of Algorithms 1 Lecture 02, August 30, 2007



Outline

➣ Review

➣ Time efficiency

➣ Worst-case, best-case, and average case

➣ Order of growth

➣ O, Ω and Θ

➣ Examples and exercises

CS483 Design and Analysis of Algorithms 2 Lecture 02, August 30, 2007



Review

In last class

➣ What is an algorithm?� Definition and properties

➣ Why do we study algorithms?� Theoretical importance and practical importance

➣ There may exist multiple algorithms for the same problem. (Refer to “Greatest

Common Divisor” Problem.)

CS483 Design and Analysis of Algorithms 3 Lecture 02, August 30, 2007



Review

In last class

➣ What is an algorithm?� Its definition and properties

➣ Why do we study algorithms?� Theoretical importance and practical importance

➣ There may exist multiple algorithms for the same problem. (Refer to “Greatest

Common Divisor” Problem.)

In this class

➣ ➙ Given an algorithm, how do we analyze it?� Is the algorithm correct?� What is its running time?

(similar for space efficiency analysis)

CS483 Design and Analysis of Algorithms 4 Lecture 02, August 30, 2007



Example: Greatest Common Divisor gcd(m,n)

3 algorithms calculating gcd(m, n). Assume m > n > 0.

1. From gcd(m, n)’s definition: check each number in decreasing order by 1

starting from min{m, n}.

n, n − 1, n − 2, . . .

2. From gcd(m, n)’s definition and prime numbers definition: gcd(m, n) is the

product of all common factors of m and n.� List all prime numbers ≤ n. (Sieve method)� Prime number factorization of m and n.� Multiply all the common factors.

3. Euclid’s algorithm: gcd(m, n) = gcd(n, m mod n)

CS483 Design and Analysis of Algorithms 5 Lecture 02, August 30, 2007



Example: Greatest Common Divisor gcd(m,n)

3 algorithms calculating gcd(m, n). Assume m > n > 0.

1. From gcd(m, n)’s definition: check each number in decreasing order by 1

since min{m, n}.

n, n − 1, n − 2, . . .

2. From gcd(m, n)’s definition and prime numbers definition: gcd(m, n) is the

product of all common factors of m and n.� List all prime numbers ≤ n. (Sieve method)� Prime number factorization of m and n.� Multiply all the common factors.

3. Euclid’s algorithm: gcd(m, n) = gcd(n, m mod n)

➙ Question: Which one runs the fastest?

CS483 Design and Analysis of Algorithms 6 Lecture 02, August 30, 2007



Outline

➣ Review

➣ Time efficiency

➣ Worst-case, best-case, and average case

➣ Order of growth

➣ O, Ω and Θ

➣ Examples and exercises

CS483 Design and Analysis of Algorithms 7 Lecture 02, August 30, 2007



Empirical Analysis vs. Theoretical Analysis of Time Efficiency

➣ Approach of estimating the running time

1. Select a typical sample of inputs

2. Count actual number of basic executions or record the running time

3. Analyze the collected data

CS483 Design and Analysis of Algorithms 8 Lecture 02, August 30, 2007



Empirical Analysis vs. Theoretical Analysis of Time Efficiency

➣ Approach of estimating the running time

1. Select a typical sample of inputs

2. Count actual number of basic executions or record the running time

3. Analyze the collected data

➣ Drawbacks� Difficult to decide on how many samples/tests are needed to be done� Hardware/environmental dependent� Implementation dependent

CS483 Design and Analysis of Algorithms 9 Lecture 02, August 30, 2007



Theoretical Analysis of Time Efficiency

➣ Goal

Provide a machine independent measurement

➣ Common sense

The size of input is increased → algorithms run longer

CS483 Design and Analysis of Algorithms 10 Lecture 02, August 30, 2007



Theoretical Analysis of Time Efficiency

➣ Goal

Provide a machine independent measurement

We are satisfied with this goal.

➣ Common sense

The size of input is increased → algorithms run longer

➣ Measurement is based on� input size� basic operation� order of growth of running time

CS483 Design and Analysis of Algorithms 11 Lecture 02, August 30, 2007



Theoretical Analysis of Time Efficiency

➣ Input size

1. sort {a1, a2, · · · , an}

2.

2

6

6

6

4

a11 · · · a1m

.

.

.
. . .

.

.

.

an1 · · · anm

3

7

7

7

5

2

6

6

6

4

b11 · · · b1k

.

.

.
. . .

.

.

.

bm1 · · · bmk

3

7

7

7

5

3. prime(n)

4. · · ·

➣ Basic operation

The operation that contributes most towards the running time

CS483 Design and Analysis of Algorithms 12 Lecture 02, August 30, 2007



Theoretical Analysis of Time Efficiency

➣ Input size

➣ Basic operation

➣ Running time T (n)

T (n) ≈ cop · C(n),

where� n is the input size� C(n) is the total number of basic operations for input of size n.� cop is the time needed to execute one single basic operation.

CS483 Design and Analysis of Algorithms 13 Lecture 02, August 30, 2007



Outline

➣ Review

➣ Time efficiency

➣ Worst-case, best-case, and average case

➣ Order of growth

➣ O, Ω and Θ

➣ Examples and exercises

CS483 Design and Analysis of Algorithms 14 Lecture 02, August 30, 2007



Worst-case, Best-case, Average-case� Input size� Basic operation� Running time T (n)

T (n) ≈ cop · C(n),

➣ For some algorithms efficiency depends on form of input:� Worst case: Cworst(n) → maximum over inputs of size n� Best case: Cbest(n) → minimum over inputs of size n� Average case: Cavg(n) → “average” over inputs of size n

CS483 Design and Analysis of Algorithms 15 Lecture 02, August 30, 2007



Example: Greatest Common Divisor

Algorithm 0.1: gcd(a, b)

for i = {min(a, b), · · · , 1}

do







if a mod i = 0 and b mod i = 0

then return (i)

� Input size: n = min(a, b)� Basic operation: a mod i

CS483 Design and Analysis of Algorithms 16 Lecture 02, August 30, 2007



Example: Greatest Common Divisor

Algorithm 0.2: gcd(a, b)

for i = {min(a, b), · · · , 1}

do







if a mod i = 0 and b mod i = 0

then return (i)

� Input size: n = min(a, b)� Basic operation: a mod i� Worst case (worst case analysis provides an upper bound):

– When does the worst case happen? (a and b are relatively prime)

– Cworst(n) = n

CS483 Design and Analysis of Algorithms 17 Lecture 02, August 30, 2007



Example: Greatest Common Divisor

Algorithm 0.3: gcd(a, b)

for i = {min(a, b), · · · , 1}

do







if a mod i = 0 and b mod i = 0

then return (i)

� Input size: n = min(a, b)� Basic operation: a mod i� Best case

– When does the best case happen? (gcd(a, b) = min(a, b))

– Cbest(n) = 1

CS483 Design and Analysis of Algorithms 18 Lecture 02, August 30, 2007



Example: Greatest Common Divisor

Algorithm 0.4: gcd(a, b)

for i = {min(a, b), · · · , 1}

do







if a mod i = 0 and b mod i = 0

then return (i)

� Input size: n = min(a, b)� Basic operation: a mod i� Average case

– Things need to be pay attention to* Number of times of the basic operation will be executed on typical

instances

CS483 Design and Analysis of Algorithms 19 Lecture 02, August 30, 2007



* NOT the average of worst and best cases* Expected number of basic operations considered as a random variable

under some assumption about the probability distribution of all possible

inputs

– Assumptions* Assume that a and b are two randomly chosen integers* Assume that all integers have the same probability of being chosen* hint : The probability that an integer i is a and b’s greatest common

divisor is Pa,b(i) = 6

π2i2· gcd(a, b) as the integer i such that (i|a, b) and x := a/i and

y := b/i are co-prime.· The probability of two integers sharing a factor i is i−2. The

probability that two integers are co-prime is 6/π2.)

CS483 Design and Analysis of Algorithms 20 Lecture 02, August 30, 2007



Example: Greatest Common Divisor

Algorithm 0.5: gcd(a, b)

for i = {min(a, b), · · · , 1}

do







if a mod i = 0 and b mod i = 0

then return (i)� Average case

Denote n = min(a, b)

Cavg(n) = 1 · Pa,b(n) + 2 · Pa,b(n − 1) + · · · + n · Pa,b(1)

=
6

π2
(

1

n2
+

2

(n − 1)2
+ · · · +

n

12
)

When n = 10, Cavg(10) = 8.583.

CS483 Design and Analysis of Algorithms 21 Lecture 02, August 30, 2007



Outline

➣ Review

➣ Time efficiency

➣ Worst-case, best-case, and average case

➣ Order of growth

➣ O, Ω and Θ

➣ Examples and exercises

CS483 Design and Analysis of Algorithms 22 Lecture 02, August 30, 2007



Orders of Growth

➣ Input size

➣ Basic operation

➣ Running time T (n)

T (n) ≈ cop · C(n),

where n is the input size, C(n) is the total number of basic operations for

input of size n, and cop is the time needed to execute one single basic

operation.

➣ Examples

Given that C(n) = 1

2
n(n − 1), how much the performance will be affected

if the input size n is doubled?

growth =
T (2n)

T (n)
≈

cop · C(2n)

cop · C(n)
=

4n − 2

n − 1
≈ 4

CS483 Design and Analysis of Algorithms 23 Lecture 02, August 30, 2007



CS483 Design and Analysis of Algorithms 24 Lecture 02, August 30, 2007


