CS483-02 Asymptotic Notations for Algorithm Analysis

Instructor: Fei Li

Room 443 ST II
Office hours: Tue. \& Thur. 4:30pm - 5:30pm or by appointments
lifei@cs.gmu.edu with subject: CS483
http://www.cs.gmu.edu/~ lifei/teaching/cs483_fall07/
This lecture note is based on Dr. J.M. Lien's lecture notes.

Outline

$>$ Review
$>$ Time efficiency
> Worst-case, best-case, and average case
$>$ Order of growth
$>O, \Omega$ and Θ
> Examples and exercises

Review

In last class
$>$ What is an algorithm?

- Definition and properties
$>$ Why do we study algorithms?
- Theoretical importance and practical importance
$>$ There may exist multiple algorithms for the same problem. (Refer to "Greatest Common Divisor" Problem.)

Review

In last class
$>$ What is an algorithm?

- Its definition and properties
$>$ Why do we study algorithms?
- Theoretical importance and practical importance
> There may exist multiple algorithms for the same problem. (Refer to "Greatest Common Divisor" Problem.)

In this class
$>\rightarrow$ Given an algorithm, how do we analyze it?

- Is the algorithm correct?
- What is its running time?
(similar for space efficiency analysis)

Example: Greatest Common Divisor $\operatorname{gcd}(m, n)$

3 algorithms calculating $\operatorname{gcd}(m, n)$. Assume $m>n>0$.

1. From $\operatorname{gcd}(m, n)$'s definition: check each number in decreasing order by 1 starting from $\min \{m, n\}$.
$n, n-1, n-2, \ldots$
2. From $\operatorname{gcd}(m, n)$'s definition and prime numbers definition: $\operatorname{gcd}(m, n)$ is the product of all common factors of m and n.

- List all prime numbers $\leq n$. (Sieve method)
- Prime number factorization of m and n.
- Multiply all the common factors.

3. Euclid's algorithm: $\operatorname{gcd}(m, n)=\operatorname{gcd}(n, m \bmod n)$

Example: Greatest Common Divisor $\operatorname{gcd}(m, n)$

3 algorithms calculating $\operatorname{gcd}(m, n)$. Assume $m>n>0$.

1. From $\operatorname{gcd}(m, n)$'s definition: check each number in decreasing order by 1 since $\min \{m, n\}$.
$n, n-1, n-2, \ldots$
2. From $\operatorname{gcd}(m, n)$'s definition and prime numbers definition: $\operatorname{gcd}(m, n)$ is the product of all common factors of m and n.

- List all prime numbers $\leq n$. (Sieve method)
- Prime number factorization of m and n.
- Multiply all the common factors.

3. Euclid's algorithm: $\operatorname{gcd}(m, n)=\operatorname{gcd}(n, m \bmod n)$
\rightarrow Question: Which one runs the fastest?

Outline

$>$ Review
$>$ Time efficiency
$>$ Worst-case, best-case, and average case
$>$ Order of growth
$\nabla O, \Omega$ and Θ
$>$ Examples and exercises

Empirical Analysis vs. Theoretical Analysis of Time Efficiency

$>$ Approach of estimating the running time

1. Select a typical sample of inputs
2. Count actual number of basic executions or record the running time
3. Analyze the collected data

Empirical Analysis vs. Theoretical Analysis of Time Efficiency

$>$ Approach of estimating the running time

1. Select a typical sample of inputs
2. Count actual number of basic executions or record the running time
3. Analyze the collected data
\geqslant Drawbacks

- Difficult to decide on how many samples/tests are needed to be done
- Hardware/environmental dependent
- Implementation dependent

Theoretical Analysis of Time Efficiency

$>$ Goal
Provide a machine independent measurement
$>$ Common sense
The size of input is increased \rightarrow algorithms run longer

Theoretical Analysis of Time Efficiency

$>$ Goal
Provide a machine independent measurement
We are satisfied with this goal.
$>$ Common sense
The size of input is increased \rightarrow algorithms run longer
$>$ Measurement is based on

- input size
- basic operation
- order of growth of running time

Theoretical Analysis of Time Efficiency

\rangle Input size

1. sort $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$
2. $\left[\begin{array}{ccc}a_{11} & \cdots & a_{1 m} \\ \vdots & \ddots & \vdots \\ a_{n 1} & \cdots & a_{n m}\end{array}\right]\left[\begin{array}{ccc}b_{11} & \cdots & b_{1 k} \\ \vdots & \ddots & \vdots \\ b_{m 1} & \cdots & b_{m k}\end{array}\right]$
3. $\operatorname{prime}(n)$
4. ...
$>$ Basic operation
The operation that contributes most towards the running time

Theoretical Analysis of Time Efficiency

$>$ Input size
$>$ Basic operation
$>$ Running time $T(n)$

$$
T(n) \approx c_{o p} \cdot C(n)
$$

where

- n is the input size
- $C(n)$ is the total number of basic operations for input of size n.
- $c_{o p}$ is the time needed to execute one single basic operation.

Outline

$>$ Review
\geqslant Time efficiency
$>$ Worst-case, best-case, and average case
$>$ Order of growth
$>O, \Omega$ and Θ
$>$ Examples and exercises

Worst-case, Best-case, Average-case

- Input size
- Basic operation
- Running time $T(n)$

$$
T(n) \approx c_{o p} \cdot C(n)
$$

$>$ For some algorithms efficiency depends on form of input:

- Worst case: $C_{\text {worst }}(n) \rightarrow$ maximum over inputs of size n
- Best case: $C_{\text {best }}(n) \rightarrow$ minimum over inputs of size n
- Average case: $C_{a v g}(n) \rightarrow$ "average" over inputs of size n

Example: Greatest Common Divisor

Algorithm 0.1: $\operatorname{gcd}(a, b)$

$$
\begin{aligned}
& \text { for } i=\{\min (a, b), \cdots, 1\} \\
& \text { do }\left\{\begin{array}{c}
\text { if } a \bmod i=0 \text { and } b \bmod i=0 \\
\text { then return }(i)
\end{array}\right.
\end{aligned}
$$

- Input size: $n=\min (a, b)$
- Basic operation: $a \bmod i$

Example: Greatest Common Divisor

Algorithm 0.2: $\operatorname{gcd}(a, b)$

$$
\begin{aligned}
& \text { for } i=\{\min (a, b), \cdots, 1\} \\
& \text { do }\left\{\begin{array}{c}
\text { if } a \bmod i=0 \text { and } b \bmod i=0 \\
\text { then return }(i)
\end{array}\right.
\end{aligned}
$$

- Input size: $n=\min (a, b)$
- Basic operation: $a \bmod i$
- Worst case (worst case analysis provides an upper bound):
- When does the worst case happen? (a and b are relatively prime)
$-C_{w o r s t}(n)=n$

Example: Greatest Common Divisor

Algorithm 0.3: $\operatorname{gcd}(a, b)$

$$
\begin{aligned}
& \text { for } i=\{\min (a, b), \cdots, 1\} \\
& \text { do }\left\{\begin{array}{c}
\text { if } a \bmod i=0 \text { and } b \bmod i=0 \\
\text { then return }(i)
\end{array}\right.
\end{aligned}
$$

- Input size: $n=\min (a, b)$
- Basic operation: $a \bmod i$
- Best case
- When does the best case happen? $(\operatorname{gcd}(a, b)=\min (a, b))$
$-C_{b e s t}(n)=1$

Example: Greatest Common Divisor

Algorithm 0.4: $\operatorname{gcd}(a, b)$

$$
\begin{aligned}
& \text { for } i=\{\min (a, b), \cdots, 1\} \\
& \text { do }\left\{\begin{array}{c}
\text { if } a \bmod i=0 \text { and } b \bmod i=0 \\
\text { then return }(i)
\end{array}\right.
\end{aligned}
$$

- Input size: $n=\min (a, b)$
- Basic operation: $a \bmod i$
- Average case
- Things need to be pay attention to
* Number of times of the basic operation will be executed on typical instances
* NOT the average of worst and best cases
* Expected number of basic operations considered as a random variable under some assumption about the probability distribution of all possible inputs
- Assumptions
* Assume that a and b are two randomly chosen integers
* Assume that all integers have the same probability of being chosen
* hint: The probability that an integer i is a and b 's greatest common divisor is $P_{a, b}(i)=\frac{6}{\pi^{2} i^{2}}$
- $\operatorname{gcd}(a, b)$ as the integer i such that $(i \mid a, b)$ and $x:=a / i$ and $y:=b / i$ are co-prime.
- The probability of two integers sharing a factor i is i^{-2}. The probability that two integers are co-prime is $6 / \pi^{2}$.)

Example: Greatest Common Divisor

Algorithm 0.5: $\operatorname{gcd}(a, b)$

$$
\begin{aligned}
& \text { for } i=\{\min (a, b), \cdots, 1\} \\
& \text { do }\left\{\begin{array}{l}
\text { if } a \bmod i=0 \text { and } b \bmod i=0 \\
\text { then return }(i)
\end{array}\right.
\end{aligned}
$$

- Average case

Denote $n=\min (a, b)$

$$
\begin{aligned}
& \qquad \begin{aligned}
C_{a v g}(n) & =1 \cdot P_{a, b}(n)+2 \cdot P_{a, b}(n-1)+\cdots+n \cdot P_{a, b}(1) \\
& =\frac{6}{\pi^{2}}\left(\frac{1}{n^{2}}+\frac{2}{(n-1)^{2}}+\cdots+\frac{n}{1^{2}}\right) \\
\text { When } n=10, & C_{a v g}(10)=8.583
\end{aligned}
\end{aligned}
$$

Outline

\rangle Review
$>$ Time efficiency
> Worst-case, best-case, and average case
$>$ Order of growth
$>O, \Omega$ and Θ
> Examples and exercises

Orders of Growth

\rangle Input size
$>$ Basic operation
$>$ Running time $T(n)$

$$
T(n) \approx c_{o p} \cdot C(n)
$$

where n is the input size, $C(n)$ is the total number of basic operations for input of size n, and $c_{o p}$ is the time needed to execute one single basic operation.
$>$ Examples
Given that $C(n)=\frac{1}{2} n(n-1)$, how much the performance will be affected if the input size n is doubled?

$$
\text { growth }=\frac{T(2 n)}{T(n)} \approx \frac{c_{o p} \cdot C(2 n)}{c_{o p} \cdot C(n)}=\frac{4 n-2}{n-1} \approx 4
$$

