
1 CS483 Lecture01 1/33

Fei Li

August 28, 2007

*This lecture note is based on Introduction to The Design and Analysis of Algorithms by Anany Levitin
and Jyh-Ming Lie’s cs483 notes.

CS483 Design and Analysis of
Algorithms*

2 CS483 Lecture01 2/33

Overview

Introduction to algorithms
Course syllabus

3 CS483 Lecture01 3/33

What is an algorithm?

An algorithmalgorithm is a sequence of unambiguous
instructions for solving a problem, i.e., for
obtaining a required output for any legitimate input
in a finite amount of time.

output

problem

algorithm

“computer”input

4 CS483 Lecture01 4/33

Procedure of solving a problem
on a computer

Analyze and model a real problem as a computational
problem

Get the intuition

Design an algorithm
Prove its correctness

Analyze the solution, i.e., time efficiency, space efficiency,
optimality, etc.

Can we get an improved solution?

Can we generalize our solution?

Code an algorithm

5 CS483 Lecture01 5/33

Example of a computational problem

Statement of problem:
Rank students based on their grades

Input: A sequence of n numbers <a1, a2, …, an>

Output: A reordering of the input sequence <a´1, a´2, …, a´n>
so that a´i ≤ a´j whenever i < j

Algorithms:
Selection sort
Insertion sort
Merge sort
(many others)

6 CS483 Lecture01 6/33

Selection Sort

Input: An array a[1],…,a[n]

Output: An array sorted in non-decreasing order

Algorithm:

Example: <5,3,2,8,3> → <2,3,3,5,8>

for i=1 to n
swap a[i] with smallest of a[i],…a[n]

7 CS483 Lecture01 7/33

An algorithm

Recipe, process, method, technique, procedure,
routine,… with following requirements:

Finiteness
terminates after a finite number of steps

Definiteness
rigorously and unambiguously specified

Input
valid inputs are clearly specified

Output
can be proved to produce the correct output given a valid input

Effectiveness
steps are sufficiently simple and basic

8 CS483 Lecture01 8/33

Why study algorithms?

Theoretical importance
The core of computer science

Practical importance
A practitioner’s toolkit of known algorithms
Framework for designing and analyzing
algorithms for new problems

9 CS483 Lecture01 9/33

Example1 – String Matching (Chap. 3 and 7)

A string is a sequence of characters
from an alphabet.
Problem: search strings in a text

Input:
a string of m characters called the pattern
a string of n characters called the text

Output:
a substring of the text that matches the
pattern.

10 CS483 Lecture01 10/33

Example1 – String Matching (Chap. 3 and 7)

11 CS483 Lecture01 11/33

Example2 – Travelling Salesman
Problem (TSP) (Chapter 3)

Problem: Find the shortest tour through a given
set of cities, which a salesman visits each city
exactly once before returning to the starting city

Input:
A map of n cities
Starting city

Output:
The shortest tour which has all the cities

12 CS483 Lecture01 12/33

Travelling Salesman Problem

Weighted graph

Image from Wolfram MathWorld

A
B

C

D

E
F

G

H

13 CS483 Lecture01 13/33

Travelling Salesman Problem

A→C → G → F → B → H → D → E → A

A
B

C

D

E
F

G

H

Image from Wolfram MathWorld

A
B

C

D

E
F

G

H

14 CS483 Lecture01 14/33

Example3 – Path Finding (Chap. 9)

Problem: Find the optimal path from the origin to
the destination subject to certain objectives

Input:
A weighted graph
Origin and destination

Output:
Optimal path

15 CS483 Lecture01 15/33

Example3 – Path Finding
(Chap. 9)

16 CS483 Lecture01 16/33

Example4 – Interval Scheduling (Chap. 8 and 9)

Problem: Maximize the maximum number or
possible size of requests.

Input:
A shared resource used by one person at one
time
A bunch of requests

User i: Can I reserve the resource (classroom, book,
supercomputer, microscope, ..) from time s_i to f_i?

Output:
A selection of requests with assigned resource

17 CS483 Lecture01 17/33

Example5 – Stable Marriage (Chap. 10)

A set of marriages is stable if there are no two
people of opposite sex who would both rather
have each other than their current partners.

Problem: Find a stable marriage matching for given
men and women to be paired off in marriages.

Input:
n men and n women
Each person has ranked all members of the opposite
sex with a unique number between 1 and n in order of
preference

Output:
A matching

18 CS483 Lecture01 18/33

Basic issues related to algorithms

How to design algorithms
How to express algorithms
Proving correctness
Efficiency

Theoretical analysis
Empirical analysis

Optimality and improvement

19 CS483 Lecture01 19/33

Greatest Common Divisor Problem

Problem: Find gcd(m,n), the greatest common
divisor of two nonnegative, not both zero integers m
and n
Examples: gcd(60,24) = 12, gcd(60,0) = 60

20 CS483 Lecture01 20/33

Solution 1

Observation: gcd(m,n) ≤ min{m,n}
Consecutive integer checking algorithm

Step 1 Assign the value of min{m,n} to t
Step 2 Divide m by t. If the remainder is 0, go
to Step 3; otherwise, go to Step 4
Step 3 Divide n by t. If the remainder is 0,
return t and stop; otherwise, go to Step 4
Step 4 Decrease t by 1 and go to Step 2

21 CS483 Lecture01 21/33

Solution 2

Middle-school procedure
Step 1 Find the prime factorization of m
Step 2 Find the prime factorization of n
Step 3 Find all the common prime factors
Step 4 Compute the product of all the common prime
factors and return it as gcd(m,n)

Example: gcd(60,24)
m = 60 = 2 x 2 x 3 x 5
n = 24 = 2 x 2 x 2 x 3
gcd(m, n) = gcd(60,24) = 2 x 2 x 3 = 12

Not an algorithm! Prime factorization

22 CS483 Lecture01 22/33

Prime Factorization

Input: Integer n ≥ 2
Output: A sequence of prime numbers S, whose
multiplication is n.
Algorithm:

find a list of prime numbers P that are smaller than n
i ← 2
while i < n do

if n%i = 0
then s ← i, n ← n/I
else i ← next prime number

23 CS483 Lecture01 23/33

Sieve

Input: Integer n ≥ 2
Output: List of primes less than or equal to n
Algorithm:
for p ← 2 to n do A[p] ← p
for p ← 2 to ⎣n⎦ do

if A[p] ≠ 0 //p hasn’t been previously eliminated from the list
j ← p * p

while j ≤ n do
A[j] ← 0 //mark element as eliminated
j ← j + p

24 CS483 Lecture01 24/33

Sieve (cont.)

Example
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 3 5 7 9 11 13 15 17 19
2 3 5 7 11 13 17 19
2 3 5 7 11 13 17 19

25 CS483 Lecture01 25/33

Solution 3 - Euclid’s Algorithm

Euclid’s algorithm is based on repeated application of
equality

gcd(m,n) = gcd(n, m mod n)
until the second number becomes 0, gcd(m, 0) = 0 .
Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12
Algorithm

while n ≠ 0 do
r ← m mod n
m← n
n ← r

return m

26 CS483 Lecture01 26/33

Algorithm design
techniques/strategies

Brute force

Divide and conquer

Decrease and
conquer

Transform and
conquer

Space and time
tradeoffs

Greedy approach
Dynamic programming
Iterative improvement
Backtracking
Branch and bound

27 CS483 Lecture01 27/33

Analysis of algorithms

How good is the algorithm?
time efficiency
space efficiency

Does there exist a better algorithm?
Simplicity
Generality
lower bounds
optimality

28 CS483 Lecture01 28/33

Syllabus

Lecture time
Tue & Thu 3:00-4:15pm

Office Hour
Tue & Thu 4:30-5:30pm
Office: 443 ST II

Course webpage:
www.cs.gmu.edu/~lifei/teaching/cs483_fall07/

29 CS483 Lecture01 29/33

Syllabus (cont.)

TA: Yanyan Lu
Email: ylu4@gmu.edu
Office hour: Wed & Friday 4:00pm
– 5:00pm
Room 437 STII

Required Textbook:
Introduction to the Design and
Analysis of Algorithms by
Anany Levitin , Addison Wesley;
2nd edition (2007)

30 CS483 Lecture01 30/33

Topics
Analysis of Algorithm Efficiency
Brute Force
Divide (decrease) and Conquer
Transform and Conquer
Greedy Techniques
Dynamic Programming
Iterative Improvement
Limitations of Algorithm Power and Coping
with Limitations

Syllabus (cont.)

31 CS483 Lecture01 31/33

Syllabus (cont.)

Grading (tentative)
Biweekly assignment (40%)

Work on your assignments independently.
List all the resources such as web, books and other
students that may have helped with your solution.
Hand in hard copies.
One late submission (up to one week past the due
date) per person per semester is permitted.

Midterm exam (25%)
Final exam (35%)

Two pages (letter size) of notes are allowed for both
exams.

32 CS483 Lecture01 32/33

Some Suggestions

Start working on assignments early
Review notes and textbook after class
Ask questions!

33 CS483 Lecture01 33/33

Before next class
Read Chapter 1.1, 1.2, 1.4 and Appendix A.

Next class
Algorithm analysis
Recursion

