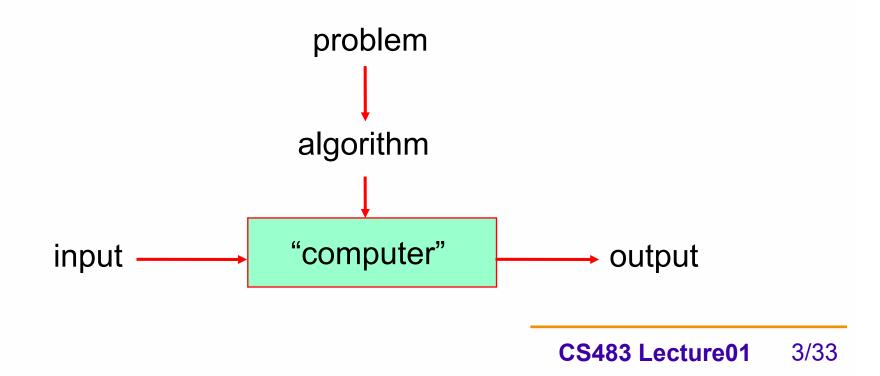
CS483 Design and Analysis of Algorithms*

Fei Li

August 28, 2007


*This lecture note is based on *Introduction to The Design and Analysis of Algorithms* by Anany Levitin and Jyh-Ming Lie's cs483 notes.

Introduction to algorithms
 Course syllabus

What is an algorithm?

An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.

Procedure of solving a problem on a computer

- Analyze and model a real problem as a computational problem
- Get the intuition
- 🔵 Design an algorithm
 - Prove its correctness
- Analyze the solution, i.e., time efficiency, space efficiency, optimality, etc.
 - Can we get an improved solution?
 - Can we generalize our solution?
- 🔵 Code an algorithm

Example of a computational problem

Statement of problem:

Rank students based on their grades

 \bigcirc *Input:* A sequence of *n* numbers < a_1 , a_2 , ..., a_n >

- Output: A reordering of the input sequence $<a'_1, a'_2, ..., a'_n >$ so that $a'_i \le a'_i$ whenever i < j
- Algorithms:
 - Selection sort
 - Insertion sort
 - Merge sort
 - (many others)

Selection Sort

Input: An array a[1],...,a[n]
 Output: An array sorted in non-decreasing order
 Algorithm:

for *i*=1 to *n* swap a[*i*] with smallest of a[i],...a[*n*]

• Example: $<5,3,2,8,3> \rightarrow <2,3,3,5,8>$

An algorithm

Recipe, process, method, technique, procedure, routine,... with following requirements:

😑 Finiteness

terminates after a finite number of steps

Definiteness

rigorously and unambiguously specified

😑 Input

valid inputs are clearly specified

Output

can be proved to produce the correct output given a valid input

Effectiveness

steps are sufficiently simple and basic

Why study algorithms?

Theoretical importance
 The core of computer science
 Practical importance
 A practitioner's toolkit of known algorithms
 Framework for designing and analyzing algorithms for new problems

Example1 – String Matching (Chap. 3 and 7)

- A string is a sequence of characters from an alphabet.
- Problem: search strings in a text
- Input:
 - a string of m characters called the pattern
 - a string of n characters called the text
- Output:
 - a substring of the text that matches the pattern.

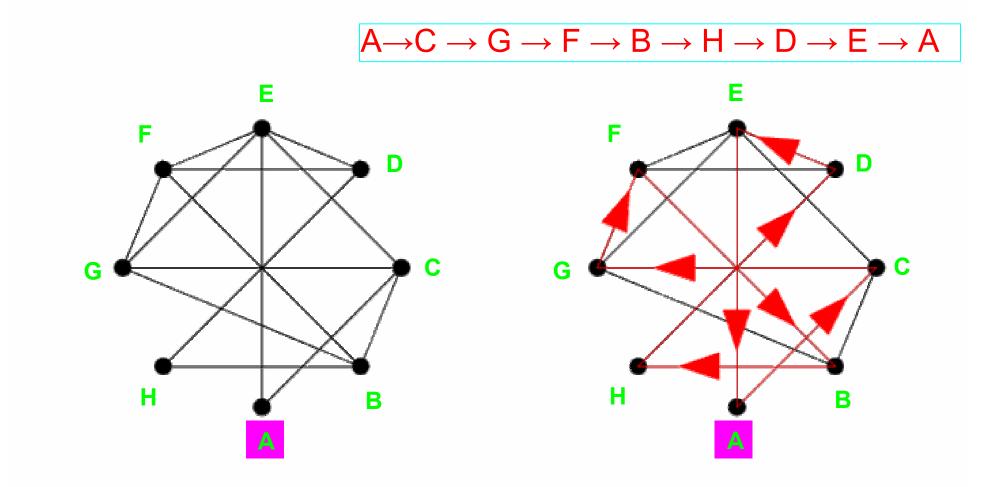
George Mason bookstore - Google Search - Mozilla Firefox		
ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>Y</u> ahoo! <u>T</u> ools <u>H</u> elp		
🃁 🔹 🛶 👻 📀 🏠 <u>[</u> http://www.google.com/search?hl=en&rlz=1B3GGGL_enUS219US219&q=George+N	1ason+bookstore&btnG=Search 🔻 🕨 💽 Google	
oogle 🛛 George Mason bookstore 🛛 🔽 🕞 Search 🔹 🖗 🧭 🤔 😨 🛛 🔹 🏠 Bookmarks* PageBank * 🔦 AutoLi	nk 📔 AutoFill 🕞 Send to• 🥖 🖳 George 🔍 Mason 🗟 bookstore	🔘 Se
Neb <u>Images Video News Maps Gmail more</u> ▼		<u>Sign</u>
George Mason bookstore Search Preferences	New! View and manage your	r woh hist
Web	Results 1 - 10 of about 530,000 for George Mason bookstore. (0.1	
Velcome to <mark>George Mason</mark> University - Barnes & Noble College <mark>Bookstore</mark> Velcome to <mark>George Mason</mark> University <mark>Bookstore</mark> If so, you could get up to 50% of what		
ou paid for your books by selling them back to the bookstore		
mu.bkstore.com/ - 79k - <u>Cached</u> - <u>Similar pages</u>		
Velcome to University of Chicago - Barnes & Noble College Bookstore		
campus <mark>bookstore</mark> featuring general interest and professional titles, a large bargain inventory, nd a cafe.		
chicago.bkstore.com/ - 66k - <u>Cached</u> - <u>Similar pages</u>		
Diversified Merchandise Added as <mark>Bookstore</mark> Sales Soar - The Mason		
ales this year at the <mark>George Mason</mark> University <mark>Bookstore</mark> are up significantly, thanks to the		
nen's basketball team's run to the NCAA Final Four in March, azette.gmu.edu/articles/8727/ - 8k - <u>Cached</u> - <u>Similar pages</u>		
<u>New Legislation Aims to Lower Textbook Costs - The Mason Gazette Jack Smith, the manager of the <mark>George Mason bookstore</mark>, believes the bill "will encourage</u>		
faculty to consider the cost of books before they choose them		
gazette.gmu.edu/articles/8233/ - 9k - <u>Cached</u> - <u>Similar pages</u> [More results from gazette.gmu.edu]		
Bookstore - Prince William Campus - George Mason University		
he PWC Book Store is a "one-stop-shop" for many university services at Prince William campus, including textbooks, photo copy course packets, snacks/soft		
rincewilliam.gmu.edu/bookstr.html - 5k - <u>Cached</u> - <u>Similar pages</u>		
George Mason E-Files		
low to know if you are in the good books of IRS? This training provides an overview of fiscal		
rocesses at <mark>George Mason</mark> University including an ww.gmu.edu/departments/infoservices/efiles070907.html - 24k - Cached - Similar pages		
<u>Discounts for Mason Alumni George Mason University Alumni <mark>Mason</mark> Alumni are eligible for a 10% discount* at any campus <mark>bookstore</mark> on <mark>Mason</mark> apparel.</u>		
Simply show the George Mason University Alumni Association member		
www.gmu.edu/alumni/discounts.html - 20k - <u>Cached</u> - <u>Similar pages</u> [More results from www.gmu.edu]		
The Volgenau School of Information Technology and Engineering at Faculty that need to rent regalia need to come to the bookstore and place an George		
lason University The Volgenau School of Information Technology and		
e.gmu.edu/events/convocation/frequently_asked_questions.php - 16k -		

Example2 – Travelling Salesman Problem (TSP) (Chapter 3)

Problem: Find the shortest tour through a given set of cities, which a salesman visits each city exactly once before returning to the starting city

Input:

- A map of n cities
- Starting city


Output:

The shortest tour which has all the cities

Travelling Salesman Problem

Weighted graph Ε F D С G н B

Travelling Salesman Problem

CS483 Lecture01 13/33

Example3 – Path Finding (Chap. 9)

Problem: Find the optimal path from the origin to the destination subject to certain objectives

Input:
 A weighted graph
 Origin and destination
 Output:
 Optimal path

Example4 – Interval Scheduling (Chap. 8 and 9)

Problem: Maximize the maximum number or possible size of requests.

Input:

A shared resource used by one person at one time

- A bunch of requests
 - User i: Can I reserve the resource (classroom, book, supercomputer, microscope, ..) from time s_i to f_i?

• Output:

A selection of requests with assigned resource

Example5 – Stable Marriage (Chap. 10)

- A set of marriages is stable if there are no two people of opposite sex who would both rather have each other than their current partners.
- Problem: Find a stable marriage matching for given men and women to be paired off in marriages.

Input:

- n men and n women
- Each person has ranked all members of the opposite sex with a unique number between 1 and n in order of preference

Output:

A matching

Basic issues related to algorithms

- How to design algorithms
- How to express algorithms
- Proving correctness
- Efficiency
 - Theoretical analysis
 - Empirical analysis
- Optimality and improvement

Greatest Common Divisor Problem

- Problem: Find gcd(m,n), the greatest common divisor of two nonnegative, not both zero integers m and n
- Examples: gcd(60,24) = 12, gcd(60,0) = 60

Solution 1

Observation: gcd(m,n) ≤ min{m,n}
Consecutive integer checking algorithm
Step 1 Assign the value of min{m,n} to t
Step 2 Divide m by t. If the remainder is 0, go to Step 3; otherwise, go to Step 4
Step 3 Divide n by t. If the remainder is 0, return t and stop; otherwise, go to Step 4
Step 4 Decrease t by 1 and go to Step 2

Solution 2

Middle-school procedure

- Step 1 Find the prime factorization of *m*
- Step 2 Find the prime factorization of *n*
- Step 3 Find all the common prime factors

Step 4 Compute the product of all the common prime factors and return it as gcd(m,n)

Example: gcd(60,24)

● m = 60 = **2** x **2** x **3** x 5

 $n = 24 = 2 \times 2 \times 2 \times 3$

 \bigcirc gcd(m, n) = gcd(60,24) = **2** x **2** x **3** = 12

Not an algorithm! Prime factorization

Prime Factorization

```
\bigcirc Input: Integer n \ge 2
```

- Output: A sequence of prime numbers S, whose multiplication is n.
- Algorithm:

```
find a list of prime numbers P that are smaller than n

i \leftarrow 2

while i < n do

if n%i = 0

then s \leftarrow i, n \leftarrow n/l

else i \leftarrow next prime number
```

Sieve

Solution Integer $n \ge 2$

Output: List of primes less than or equal to n

Algorithm:

```
for p \leftarrow 2 to n do A[p] \leftarrow p
for p \leftarrow 2 to \lfloor n \rfloor do
if A[p] \neq 0 //p hasn't been previously eliminated from the list
j \leftarrow p * p
while j \le n do
A[j] \leftarrow 0 //mark element as eliminated
j \leftarrow j + p
```

Sieve (cont.)

Example

2	3 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	3	5		7		9		11		13		15		17		19	
2	3	5		7				11		13				17		19	
2	3	5		7				11		13				17		19	

Solution 3 - Euclid's Algorithm

Euclid's algorithm is based on repeated application of equality

 $gcd(m,n) = gcd(n, m \mod n)$

until the second number becomes 0, gcd(m, 0) = 0.

Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12

Algorithm

while $n \neq 0$ do $r \leftarrow m \mod n$ $m \leftarrow n$ $n \leftarrow r$ return m

Algorithm design techniques/strategies

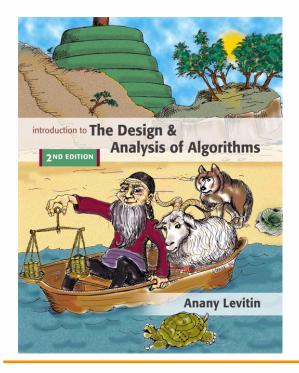
- Brute force
- Divide and conquer
- Decrease and conquer
- Transform and conquer
- Space and time tradeoffs

- Greedy approach
- Dynamic programming
- Iterative improvement
- Backtracking
- Branch and bound

Analysis of algorithms

How good is the algorithm?
time efficiency
space efficiency
Does there exist a better algorithm?
Simplicity
Generality
lower bounds
optimality

Syllabus


Lecture time
Tue & Thu 3:00-4:15pm
Office Hour
Tue & Thu 4:30-5:30pm
Office: 443 ST II
Course webpage:

www.cs.gmu.edu/~lifei/teaching/cs483_fall07/

Syllabus (cont.)

TA: Yanyan Lu

- Email: ylu4@gmu.edu
- Office hour: Wed & Friday 4:00pm
 - 5:00pm
- Room 437 STII
- Required Textbook:
 - Introduction to the Design and Analysis of Algorithms by Anany Levitin, Addison Wesley; 2nd edition (2007)

CS483 Lecture01 29/33

Syllabus (cont.)

Topics

- Analysis of Algorithm Efficiency
- Brute Force
- Divide (decrease) and Conquer
- Transform and Conquer
- Greedy Techniques
- Dynamic Programming
- Iterative Improvement
- Limitations of Algorithm Power and Coping with Limitations

Syllabus (cont.)

Grading (tentative)

- Biweekly assignment (40%)
 - Work on your assignments independently.
 - List all the resources such as web, books and other students that may have helped with your solution.
 - Hand in hard copies.
 - One late submission (up to one week past the due date) per person per semester is permitted.
- Midterm exam (25%)
- Final exam (35%)
 - Two pages (letter size) of notes are allowed for both exams.

Some Suggestions

Start working on assignments early
Review notes and textbook after class
Ask questions!

Before next class

Read Chapter 1.1, 1.2, 1.4 and Appendix A.

Next class

Algorithm analysis

Recursion