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Abstract

We present an approach for automatic annotation of
commercial videos from an arts-and-crafts domain with the
aid of textual descriptions. The main focus is on recogniz-
ing both manipulation actions (e.g. cut, draw, glue) and
the tools that are used to perform these actions (e.g. mark-
ers, brushes, glue bottle). We demonstrate how multiple vi-
sual cues such as motion descriptors, object presence, and
hand poses can be combined with the help of contextual pri-
ors that are automatically extracted from associated tran-
scripts or online instructions. Using these diverse features
and linguistic information we propose several increasingly
complex computational models for recognizing elementary
manipulation actions and composite activities, as well as
their temporal order. The approach is evaluated on a novel
dataset of comprised of 27 episodes of PBS Sprout TV, each
containing on average 8 manipulation actions.

1. Introduction
In this paper we seek to develop techniques for auto-

mated annotation and labeling of video data with the aid
of textual descriptions. With the large amounts of video
being generated every day, it becomes essential to develop
techniques for indexing and organizing this data so that it
is easy to search and browse. While current video brows-
ing methodologies are time-based, there are many more in-

Figure 1. Example video with the desired annotations in green,
example screen shots for different scene categories below the time
line, and some of the action verbs contained the transcript in yel-
low.

tuitive ways to organize the video content, e.g. based on
the natural semantic content of scenes, actions, people and
events present. The type of annotations which one seeks
and the techniques developed to acquire them vary greatly
with the domain and the types of videos available.

We focus on the arts-and-crafts domain and the anno-
tation of manipulation actions commonly encountered in
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them. This domain has several novel and interesting char-
acteristics: each activity is naturally composed of basic ac-
tion units necessitating reasoning over different time scales;
each action involves characteristic manipulation motions,
hand poses, tools and objects; and the activities have ac-
companying text instructions and transcripts which one can
use for contextual grounding. The goal is annotations like
the ones shown in Fig. 1.

Manipulation actions are difficult to recognize and of-
ten ambiguous because they are defined by rapid changes
in finger and hand poses, as well as the movement and ap-
pearance change of the manipulated objects. This makes
it necessary to include contextual constraints and domain
priors into the recognition process. There is a tight inter-
action between the type of motion that hands or the hu-
man body undergo, the shape of the hand and tool being
held, as well as the object being manipulated. We study
and model these interactions and cues explicitly and exploit
them in an action recognition framework. In the first stage
we use state-of-the-art object detectors [3], motion descrip-
tors [10] and hand pose estimators to gather some evidence
about presence of individual cues in the keyframes and also
propagate this evidence via tracking and detection across
the sequence. We then model the interactions between these
video-derived cues and text-derived contextual and domain
constraints in a Conditional Random Field [8] and formu-
late video annotation as a problem of most likely sequence
assignment given the available evidence.

Along with the development of computational models
for recognition of complex manipulation actions using con-
textual cues, we explore how one can apply natural lan-
guage processing techniques to external textual descriptions
such as transcripts, plot summaries, cooking recipes or craft
instructions to automatically mine both the semantic and
temporal information required for the annotation of the ac-
tions in the video.

Since there are no existing benchmark datasets focusing
on the recognition of complex manipulation actions, as part
of our efforts we created our new baseline dataset (see Fig. 2
for some examples) for research in this challenging area,
which we hope will be used as a benchmark dataset for fu-
ture research. We further propose an end-to-end system that
automatically annotates real-world broadcast videos with
the presence of actions and objects. Both the dataset and the
code will be publicly available, thereby reducing the barrier
of entry for further research.

2. Related work
There is a long history of human motion analysis in com-

puter vision. The surveys by Gavrila ([4]) and more recently
by Moeslund et al., ([13]), provide a broad overview of
more than three hundred papers and numerous approaches
for analyzing human motion in videos, including human

motion capture, tracking, segmentation and recognition.
Most of the work in activity recognition can be divided into
two classes: 1) collections of local models and 2) global
models. Local models compute a collection of spatio-
temporal interest points such as the ones defined in [2, 9]
and compute a descriptor based on intensity, optical flow
and their gradients in a spatio-temporal cuboid centered at
each interest point. On the other hand, global models for
human actions compute statistics of motion and intensity
over the whole frame or an extracted human skeleton or sil-
houette(e.g. [16]).

Joint modeling of actions and objects has recently also
become a topic of interest. Early work of [14] looked
at recognition of actions and objects in an HMM frame-
work, using video feeds from ceiling-mounted cameras by
observing typical office and kitchen activities. More re-
cent work of [5, 7] focused on interactions between objects
and manipulation actions and better classification and lo-
calization of these in a Bayesian framework, using a rel-
atively small number of sequences recorded in a labora-
tory. Action recognition in movies using scene context has
been demonstrated for head/whole body actions [12] using
scripts aligned to videos as level of supervision. Authors
in [6] used Multiple Instance Learning using action, ob-
ject and scene context features for human action recognition
from YouTube videos, focusing again on whole body ac-
tions relying on good human detectors. Recent work by [18]
use jointly object detectors and human pose detectors to
classify the object and pose (action performed) of the hu-
man in the single image setting. With the exception of few,
most of the work in the area of automatic action recogni-
tion considers whole body actions such as walking, running,
jumping or whole body manipulation action sequences cap-
tured in the laboratory. The use of commercial videos and
unstructured textual descriptions used in our work creates
new challenges and opens new avenues for combining nat-
ural language processing and computer vision techniques
for human action recognition.

Our work is also related to the problem of multi-media
information retrieval, although our work differs signifi-
cantly from standard approaches in that field that combine
video and text information (e.g. see [17] for a recent review
of the field). Typically when text is used in this type of mul-
timedia applications, it is simply treated as a feature like
any other, and the grammatical structure and relationship
between actions/tools and verbs/objects is not analyzed. We
see our work more as an extension of recent work that uses
probabilistic models to combine text and visual features for
activity recognition (e.g. [5, 12, 15]).

3. Dataset
Our dataset consists of commercially available

broadcast-quality videos and their associated transcripts
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Figure 2. Examples of manipulation actions in the PBS dataset.

(closed captions) from a TV show aimed at children,
demonstrating a variety of arts and crafts projects1. The
commercial videos of arts and craft shows typically have
available transcripts and/or textual descriptions of tasks to
be accomplished, and have clear segmentation boundaries
so that they can be partitioned into shots. Objects do
not have large scale variation and activities are typically
observed from a limited number of viewpoints. These
constraints make commercial broadcast videos more
applicable to the task of action annotation compared to
unconstrained consumer-generated content as found on
YouTube for which much less contextual information is
available. Overall the dataset is made up of 27 episodes,
each of them 3-5 minutes long.

As described later in the implementation Sec. 6, we auto-
matically split the video into different segments according
to the viewpoint of the camera (e.g. Zoomed-in or Zoomed-
out). The Zoomed-out shots typically include conversations
of the host and do not contain any visual evidence of manip-
ulation actions. Hence we focus our recognition and annota-
tion task on the subset of Zoomed-in shots. These typically
show human hands in motion, holding tools and manipulat-
ing and transforming objects. Examples of representative
shots for different shot categories and desired annotations
that we want our system to create are shown in Fig. 1. An
episode contains on average 8 such manipulation actions,
resulting in 220 total action shots, and 43K total frames of
action. Each shot was annotated with one action and one
tool class label. Example actions with their corresponding
labels can be seen in Fig. 2.

4. Single Shot Action and Tool Recognition
The focus of this work lies in the combination of video

cues with external information such as contextual con-
straints derived from text and domain knowledge. Due to
the complex nature of the data, we propose to use sev-
eral low and mid-level features extracted from videos to

1www.sproutonline.com

aid the classification. These features will include action
descriptors based on local spatial temporal interest point
signatures fSTIP (x) [9], the absence and presence of spe-
cific object categories ftool(x), hand poses fhand(x) and
domain-specific contextual priors extracted from textual de-
scriptions.

In this section we describe models of increasing com-
plexity to simultaneously classify actions and tools in a sin-
gle shot. We treat each zoomed-in shot in our dataset as
a single example, which we wish to map to a single ac-
tion category (e.g., Cut) and a single tool category (e.g.,
Scissors). We assume a fixed finite list of actions and
tools (e.g. automatically extracted from the text based on
a domain specific dictionary), and model the rest of the
possibilities with action category Other and tool category
Other/None. We first discuss a straightforward combina-
tion via supervised multi-class machine learning methods.
Next, we propose a joint model for inferring actions and
tools, which can explicitly model the co-occurrence rela-
tions between different actions and tools. Finally, we show
that we can incorporate prior domain knowledge into our
joint model, which allows our system to scale to different
and larger domains with minimal human supervision.

4.1. Independent modeling

Let fhand(x), ftool(x), and fSTIP (x) be our three
sources of features, described in detail in Section 6,
for an example shot x. Let A be a set of action la-
bels we are interested in applying. In our setting,
A = { Color, Cut, Draw, Glue, Paint, Other}.
A standard way to model a multi-label classification
task is with a linear function of the features for each
class a ∈ A as ga(x) = wa · f(x), where ga(x) is
a score for example x having label a, and f(x) is a
vector of features for example x, which can be some
or all of [fhand(x); ftool(x); fSTIP (x)]

2. Using a la-
beled dataset, we can learn a set of parameters wa for
each class a ∈ A using a one-class-versus-rest type
loss function. At test-time, the most likely action la-
bel a? can be obtained by a? = argmaxa∈A g

a(x).
Similarly for example x we wish to determine which
tool t ∈ T is being used where T is the set of labels
{Brush,GlueBottle,WritingTool, Scissors,None}.
We can learn linear parameters wt for each tool, and clas-
sify with t? = argmaxt∈T g

t(x) = argmaxt∈T w
t · f(x).

4.2. Joint action-tool modeling

Clearly, different actions are highly correlated with the
use of different tools. For example, a strong signal for a
particular action (e.g., Cut) may help with an ambiguous
signal for what tool is present (e.g., Scissors), and vice

2We use the convention that vectors in d dimensions are d×1 (vertical),
and use notation [x; y] to mean the concatenation of vectors x and y.
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versa. In light of this, we propose to model the joint
probability distribution over possible actions and tools for
each example: p(A = a, T = t | x). We decompose
this distribution into factors for how likely each action and
tool are independently, as well as a term which explicitly
encodes the likelihood of each possible (action,tool) pair.
One of the important things this probabilistic model allows
for is the incorporation of explicit, prior domain knowledge
about action and tool co-occurrences. In Section 4.3 we
will show that this knowledge can be obtained at little or no
cost—as is the case when automatically extracting it from
web text—which significantly reduces the amount of hu-
man work labeling data. This is of critical importance when
scaling up to larger or more varied domains and when deal-
ing with sparse annotations that can provide only unreliable
estimates of action-tool co-occurrences.

We model p(A, T | x) as a log-linear conditional ran-
dom field ([8]):

p(A = a, T = t | x) = (1)
1

Z(x)
exp

(
wA · fA(a, x) + wT · fT (t, x) + wA,T · fA,T (a, t)

)
,

where wA, fA and wT , fT correspond to action (respec-
tively tool) parameters and features, and wA,T , fA,T corre-
spond to action-tool co-occurrence parameters and features.
The term 1/Z(x) is a normalization constant which ensures
the distribution sums to 1 over all (action, tool) pair possi-
bilities. Next we describe each term in our model, as well
as inference and learning procedures.
Unary terms wA · fA and wT · fT : We set fA(a, x) =
[ga(x); ea] and fT (t, x) = [gt(x); et], using the notation
ei to denote the indicator vector with a 1 in the ith dimen-
sion and zeros elsewhere. Thus our CRF features are the
outputs of the independent action and tool models described
in Section 4.1, in conjunction with class identity features ea
and et which allow the model to learn a prior likelihood
of each class occurring (e.g., that Draw occurs more fre-
quently than Paint). Using these features, the model learns
parameters wA and wT to balance the independent beliefs
of different actions, tools, and class priors with the belief in
action-tool co-occurrences, described next.
Pairwise action-tool co-occurrence term wA,T · fA,T : It
is intuitive to think of the term exp(wA,T · fA,T (a, t))
in the form of an action-tool compatibility matrix: for
every action-tool pair, it contains a corresponding real-
valued score reflecting how likely the pair is to go to-
gether (e.g., Cut-Scissors should be very likely, Cut-
Brush very unlikely). Thus we need to specify how to
learn the entries of the action-tool compatibility matrix. We
explore two different approaches: (1) Direct estimation of
action-tool compatibility. In this case we directly learn ev-
ery entry in the action-tool compatibility matrix from our
groundtruth action-tool co-occurrences. To do this we ex-
press fdirectA,T (a, t) = [e(a,t); 1]. The last component is a bias

term to balance the values with the other terms in the CRF.
The vector e(a,t) ∈ R|A||T | has a 1 in the (a, t)th dimension
and zeros elsewhere, simply indicating the identity of the
(action, tool) pair. (2) Action-tool compatibility via outside
domain knowledge. We assume domain knowledge comes
in the form of co-occurrence matrices Ck, where Ck

a,t is the
real-valued entry in the kth co-occurrence matrix for action
a and tool t. These are obtained using natural language pro-
cessing techniques described in Section 4.3. We incorporate
outside sources of information as a weighted combination
of these co-occurrence matrices, where the learned weights
reflect the usefulness / willingness to “trust” this knowledge
compared to the other terms in the model. To accomplish
this we set fdomain

A,T (a, t) = [C1
a,t; . . . ; C

K
a,t; 1]. Note that

because of the nature of our discriminatively-trained mod-
els, the action-tool co-occurrence values cannot be inter-
preted as joint probabilities, nor is the direct estimation ap-
proach as simple as computing ground truth co-occurrence
frequencies.
Learning and Inference: Given the small number of vari-
ables (2) and state spaces (≤ 10) for each variable, infer-
ence can be performed quickly by brute force, enumerating
and computing scores for all possible (action, tool) pairs.
During testing we classify using the maximum a posteriori
(MAP) decision

(a?, t?) = argmaxa∈A,t∈T p(A = a, T = t | x).

We learn parameters by maximizing the log-likelihood of
our training data, with an additional regularization term. Let
w = [wA;wT ;wAT ] be the parameters we wish to estimate.
Assume we have a training set of m examples which come
with action and tool labels {(x(i), a(i), t(i))}mi=1. The learn-
ing optimization problem is then

minimizew
λ

2
||w||22 −

m∑
i=1

log p
(
a(i), t(i) | x(i); w

)
.

We use gradient descent to optimize this convex function.

4.3. Domain Knowledge from Natural Language

We would like to extract semantic relationships between
action and tool classes automatically from the Internet as
a source of additional domain knowledge / prior informa-
tion for our problem. In general this can be a significant
resource-saving technique: in large domains it may be diffi-
cult or time-consuming to hand-craft semantic relationships
between objects, and in technical or specialized domains
one might have to otherwise resort to hiring an expert. Fur-
thermore, in our smallish dataset the co-occurrence infor-
mation is very sparse (see Fig. 3, left); we can rely on the
huge wealth of knowledge from the web for more robust
information.
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Figure 3. Difference sources of information for action-tool co-occurrences: the groundtruth labels in our dataset, Wikipedia, and web
search, as described in Sec. 4.3. Infinite values indicate little or no co-occurrence, and were set to a fixed large finite value in the model.

Our specific task here is to obtain action-tool co-
occurrence matrices, representing how likely or unlikely it
is to see different actions and tools together. We experi-
mented with two different sources of domain knowledge:
Wikipedia and web search results3.

From Wikipedia we obtain a binary action-tool co-
occurence matrix as follows: We gather all words that ap-
pear as link or caption tokens in the Wikipedia page associ-
ated with each action. We only use links and captions be-
cause these words are most likely to be relevant to the topic
and semantically meaningful. An action-tool co-occurance
is true if any of these words correspond to a tool that could
be detected by the visual system, and false otherwise.

To measure action-tool compatability via web search,
we use a semantic distance measure called the Normalized
Google Distance (NGD) [1] which is a measure of how re-
lated two or more concepts are. The NGD between two
terms x and y is

NGD(x, y) =
max{log q(x), log q(y)} − log q(x, y)

log(N)−min{log q(x), log q(y)}

where q(x) is the number of search results for query x,
q(x, y) is the number of search results for query x and y,
and N is the total number of pages indexed by the search
engine. The lower the number, the more related two queries
are, with two identical queries having a distance of 0. We
calculate the NGD for each action-tool pair to form our co-
occurrence matrix (Fig. 3).

We can incorporate the information from both Wikipedia
and web search as Cwiki and CNGD jointly into our model,
as explained in Section 4.

5. Temporal Modeling of Action Sequences
So far we have proposed a CRF model to determine

which action and tools occur in a single shot, which is part
of a larger sequence of actions which comprise an arts-and-
crafts activity (see Fig. 1).

Now, we describe an extension to reason about the tem-
poral relationship between these shots, which exploits prior
knowledge of the temporal order of actions within the larger

3We also experimented with ConceptNet
(http://csc.media.mit.edu/conceptnet), a hand-crafted common-sense
knowledge database, but found it to have lower recall and the same
precision as the Wikipedia co-occurences.

Figure 4. The chain CRF model for the action sequence in a video
episode: hidden node (white circles) represents the action class
label of a single video shot, and each observed node (grey circles)
represents the observed visual features discussed previously.
activity. This knowledge can be extracted from transcripts
or online instructions. We hypothesize that the relative or-
der of action verbs in the transcript is highly correlated with
the relative order of actions in the video, e.g., if action v is
mentioned before action w in the text, the chance to find v
before u in the video should be higher than with no temporal
knowledge.

This hypothesis can be verified using the example video
episode illustrated in Fig. 1. In this case the action verbs
extracted from the transcript are {draw, draw, draw, draw,
color, cut, tear, use, take} and the actions in the video are
{draw, color, cut, thread}. Since the text and video are not
strictly aligned in real videos, we do not restrict ourselves
to only ordering contraints between direct neighbours, but
look at all pairs up to two positions apart. Similar ordering
constraints can also be extracted from online instructions.

To integrate this knowledge with the probability of action
classes obtained from individual video shots, we designed
a chain CRF as illustrated in Fig. 4. The node potential
is p(Ai|Xi), the probability of action class for video shot
i given the observed visual features Xi, which we estimate
from our single shot model (Sec. 4) via marginalization over
possible tools: p(Ai|Xi) =

∑
t∈T P (A, t|x). The edge po-

tential is based on the frequency of action-action bigrams in
the text: φ(Ai, Ai+1) ∝ exp(#(Ai, Ai+1)/NAA′), where
#(·, ·) is the number of times a bigram occured, and NAA′

is the total number of bigrams seen. The conditional prob-
abilities of the action classes in a video episode can be rep-
resented as follows:

p(A1, A2, ..., Ak|X1, X2, ..., Xk) = (2)∏k
i=1 p(Ai|Xi)

∏k−1
i=1 αiexp {φ(Ai, Ai+1)}

Z(X1, X2, ..., Xk))
(3)

where Z(·) is the partition function, αi a parameter to
weight the edge potentials. In the training stage, we need
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to estimate the weights αi from the training corpus. Be-
cause the Sprout TV Handcraft Show dataset is small, we
enforce αi = α to avoid over-fitting. The single parame-
ter α can be estimated using cross-validation from training
data. We find the most likely sequence of actions via Viterbi
decoding.

6. Implementation

Commercial broadcast videos are aimed to please a hu-
man viewer, and are thus often not captured in a way that
allows for straightforward processing using computer vi-
sion techniques. For example, we need to deal with vari-
ous types of transitions between scenes, as well as moving
cameras and various camera view angles and zoom factors.
During the preprocessing stage of the video pipeline, the
input video is first segmented into semantically meaningful
shots and clustered according to the camera view and zoom
setting. We use off-the-shelf algorithms for shot boundary
detection ([11]), and clustering of camera view points us-
ing visual words4, as well as a commercial face detection
and recognition system5 to detect the presence of human
faces and their sizes. Since these techniques are external
software solutions, we will not further describe them in this
paper. These visual cues enable us to accurately identify
the Zoomed-in shots we are interested in that show human
hands in motion, holding tools and manipulating and trans-
forming objects.

6.1. Motion Features for Action Recognition

Global models for action recognition tend to perform
poorly whenever there are camera or scene artifacts such
as moving cameras, self occlusions, etc. [9] showed that
extracting local space-time interest points (STIP) at several
spatial and temporal scales provides benefits previously en-
countered in object recognition approaches using SIFT fea-
tures. Once these STIP points have been extracted, fea-
tures that describe the spatial and temporal characteristics
of intensity and flow in a neighborhood of that point are
computed. We use publicly available code 6 provided by
Laptev et al. to compute a 162-dimensional feature con-
sisting of Histogram of Gradients (HOG) and Histogram
of Flow (HOF) features that are computed at the STIPs for
all the manually annotated shots. From the training dataset
consisting of half the annotated actions, all the features are
extracted and clustered in 100 clusters (codewords). For
each shot, the term frequency of each codeword is com-
puted by finding the number of features in each shot that
are closest to that codeword. After normalization, we get
a histogram of term frequencies for each shot, which we

4http://www.vlfeat.org
5http://www.pittpatt.com
6http://www.irisa.fr/vista/Equipe/People/Laptev/download.html

Figure 5. Top: example Scissors tool class. Middle: example Writ-
ingTool class. Bottom: our 128 visual hand pose words.

denote as the action features fSTIP (x) in our system (first
described in Sec. 4.1).

6.2. Object Features

For the problem of recognizing manipulation actions,
the absence or presence of a particular class of objects can
provide us with strong cues for possible actions being per-
formed by the subject. For example, a high confidence for
presence of a tool like scissors or knife can indicate the pos-
sibility of a cutting action being performed in the scene.
We adopt the state-of-the-art object detectors and extend
them to provide us with cues about the presence of par-
ticular objects in a sequence of frames. We use a mixture
of deformable, parts-based models for object detection [3].
These state-of-the-art models are robust to actual deforma-
tions of the object, varying viewpoints, and partial occlu-
sion by hands or other objects.

We concentrate on the “Tools” object class which con-
tains WritingTool, Scissors, Brush and GlueBottle.
We cannot learn models for the open, near-infinite set of
other objects potentially present in the video. Images cor-
responding to these four object classes were obtained from
external sources such as ImageNet7, LabelMe8 and Google
Image Search. We collected 20 to 30 training images per
class in this way, and annotated them with bounding boxes
for each object. We run the trained object detectors on ev-
ery 5th image of each shot and accumulate the scores into
histograms. The histograms are used as a feature to indi-
cate how likely a particular object is present in the shot, and
comprise our features fobject(x) in the composite system
described in Sec. 4.1.

6.3. Hand Features

To obtain a semantically meaningful hand pose feature,
we extract several hand segmentation hypotheses in each

7http://www.image-net.org
8http://labelme.csail.mit.edu
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frame, and quantize these into k clusters obtained via k-
means, which we interpret as discrete hand pose “words”.
The distribution of these hand pose words over a video shot
serves as a signature of the action, which we use as a fea-
ture vector fhand(k). For example, a hand pose word cor-
responding to holding a pen should appear much more fre-
quently for the action Draw. Hand segmentation hypothe-
ses are extracted in a greedy, bottom-up manner: We first
compute a probability map of skin color of close-up shots
of the hand, based on a Gaussian mixture color model in
RGB space, estimated from the skin color of detected faces
in other frames. We then greedily merge regions obtained
from a superpixelation of the image to form our hand seg-
ments. This process typically produces 1-5 hand segmen-
tation hypotheses per frame which are quantized into 128
hand pose words, shown in Fig. 5, bottom.

7. Experiments
Dataset. Our novel dataset consists of 27 episodes from
the PBS Kids show Sprout TV. It contains an average of
8 actions/episode, 220 total action shots, and 43K frames
involving actions. Each shot was annotated with one ac-
tion and one tool class label. We use the Zoomed-in shots
obtained by the automated shot segmentation approach de-
scribed in Section 6. We discard all other shots as unin-
teresting, i.e., no action is present. In all experiments, we
used half the data for training, half for testing, split so that
each action class is balanced across the train/test divide, and
no episode occurs both in training and testing. All training
meta-parameters (e.g., regularization weight) were trained
on a hold-out subset of the training set.

In this multi-class classification setting, we report nor-
malized accuracy: the mean over all classes of the mean
within-class accuracy. This performance measure is more
robust to datasets where the number of examples of each
class is very imbalanced, as in our data.

Single Shot Results Table 1 shows results for different
multiple-action-classification settings, varying the number
and types of classes, and features were used to learn the in-
dependent models. We learned models using multi-class lo-
gistic regression with L2 regularization, using the publicly
available package LIBLINEAR9. We found this to perform
slightly better than linear, polynomial or Gaussian kernel
SVMs.

In the first column we examine a nearly balanced binary
classification task between two intuitively distant actions, in
terms of tools used, hand pose and motion pattern: Cut and
Draw. We see that features ftool and fSTIP alone do very
well, separating the data as expected. The hand features
perform worse but better than random guessing.

9http://www.csie.ntu.edu.tw/ cjlin/liblinear/

color (6) color (6) brush (5)
cut (18) cut (18) cut (18) glue (20)

draw (20) draw (20) draw (20) writ. tool (28)
glue (8) glue (8) scissors (18)
paint (5) paint (5) other (48)

other (50)

fhand 63.3 27.8 20.5 23.5
ftool 91.7 42.9 37.1 48.8
fSTIP 97.5 61.1 42.1 32.3
fall 97.5 67.1 44.0 46.0

chance 50.0 20.0 16.7 20.0

Table 1. Independent modeling of actions and tools using logistic
regression. fall corresponds to [fhand, ftool, fSTIP ] .

Next we consider five-way classification between all ac-
tion classes for which we have enough training data to
model them (i.e., more than five training examples). Again
the hand features alone are the weakest cue, followed by
tool features and STIP features. The combination of all
three feature sources does better than any in isolation.

To obtain real end-to-end system results, we must
also make a classification decision on the heavy tail of
Other actions which occur infrequently and are extremely
varied. Examples include “Crease”, “Crackle”, “Deco-
rate”,“Shape”,“Sprinkle” etc.. In the third column we in-
clude this class, and see that performance suffers. This in-
dicates the need to model more classes, or use other sources
of information, like natural language, to narrow down the
set of possibilities.

In the last column we perform a similar experiment on
all shots, modeling the tool type rather than the action. Us-
ing the tool features works the best, while the hand features
provide very little helpful information. The fact that STIP
features work moderately well for tool classification and
tool features work well for actions is empirical evidence
that action cues can help determine tools and vice versa.

Table 2 shows results from our structured joint modeling
CRF experiments. Column 1 in Table 2 uses the exact same
information as column 4 and 5, Table 1, when all features
are included. The only exception is that we include class
prior features into the CRF model which allow it to learn a
better balance between the likelihood of different class la-
bels, hence slightly higher accuracy. We found that explic-
itly modeling the co-occurrence of actions and tools either
directly using our groundtruth (column 2) or using domain
knowledge (column 3) significantly helped results. For do-
main knowledge, we learned a weighted combination of
the action-tool co-occurrence matrices obtained from the
web. The action accuracy (row 1) remained nearly con-
stant throughout experiments, but the tool accuracy (row
2) and accuracy in getting the correct tool and action to-
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gether in the same example (row 3) increased significantly
when modeling action-tool co-occurrence. Most impor-
tantly, these results demonstrate that it is possible to “plug
in” domain knowledge as a substitute for groundtruth infor-
mation and get comparable performance gains over using
no joint modeling.

Temporal Action Sequence Results Finally, we evaluate
temporal modeling of action sequences. In Table 3 we see
that incorporating temporal priors on the action sequence
(through the use of likely action transitions obtained from
text) gives better perfomance. Between two types of text
sources, online instructions are slightly more helpful than
transcripts. This is likely due to the fact that transcripts
are much noisier than online instructions, containing large
amounts of narration. Consequently, the verb list extracted
from transcripts contains more irrelevant verbs besides the
action verbs we are interested in, and also occasionally does
not mention the action of interest.

normalized no groundtruth domain
accuracy joint action-tool knowledge

(%) modeling modeling modeling

action 50.9 50.8 50.8
tool 44.9 46.7 48.3

action and tool 28.0 40.7 37.8
Table 2. Joint modeling of actions and tools using a CRF incorpo-
rating class priors and action-tool co-occurences.

8. Conclusions and Future Work
We have presented a novel approach for annotation of

commercial videos from the arts and craft domain using a
combination of low and mid-level features along with the
contextual priors extracted from unstructured textual de-
scriptions and the web using natural language processing
techniques. Our flexible model makes explicit the interac-
tions between objects and tools, and also the interaction be-
tween actions in a sequence. It allows us to incorporate ex-
ternal domain knowledge as a replacement for ground truth
co-occurrence information. This allows us to have more ro-
bust estimation when our groundtruth information is very
sparse. This is of critical importance when scaling up to

Action Ref.
Model Acc.(%) Section
STIP, Single Shot 42.1 4.1,6
STIP + Tool + Hand Feature, Single Shot 46.1 4.1,6
Single Shot Joint CRF Model 50.8 4.2
Temporal CRF w/ bigram from transcripts 52.0 5
Temporal CRF w/ bigram from online instructions 53.0 5

Table 3. Overall action classification accuracy for the Sprout TV
Handcraft Show dataset.

many different domains in which actions and objects have
interesting relationships.
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