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Abstract

Indoor and outdoor urban environments posses many

regularities which can be efficiently exploited and used for

general image parsing tasks. We present a novel approach

for detecting rectilinear structures and demonstrate their

use for wide baseline stereo matching, planar 3D recon-

struction, and computation of geometric context. Assum-

ing a presence of dominant orthogonal vanishing direc-

tions, we proceed by formulating the detection of the rec-

tilinear structures as a labeling problem on detected line

segments. The line segment labels, respecting the proposed

grammar rules, are established as the MAP assignment of

the corresponding MRF. The proposed framework allows to

detect both full as well as partial rectangles, rectangle-in-

rectangle structures, and rectangles sharing edges. The use

of detected rectangles is demonstrated in the context of dif-

ficult wide baseline matching tasks in the presence of repet-

itive structures and large appearance changes.

1. Introduction

Rectilinear geometric structures are one of the most

commonly encountered structures in man-made indoor and

outdoor environments. In many instances one can directly

associate semantic labels with detected regions of rectangu-

lar shape such as doors, windows, posters, tables, building

facades, etc. As planar structures, they can also be viewed

as large support regions of co-planar points and hence

provide an effective alternative for difficult wide baseline

matching tasks and subsequent piecewise planar 3D recon-

struction. These are just few reasons why efficient and reli-

able detection of the rectangular structures is of importance.

The two main contributions of the presented work are

in a new method for detection of full or partial rectangles

as well as a novel approach for their matching and pose

recovery in a difficult wide baseline setting. We will also

briefly demonstrate how the rectangles can serve as support
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Figure 1. The detection of rectangles and their applications. Left

column: Wide baseline stereo matching. An outdoor image with

detected and matched rectangles (only large ones are shown) with

the first image from Fig. 8 and top view of the two-view piecewise

planar 3D reconstruction. Right column: The MRF-based orthog-

onal plane detection. An indoor image with rectangles detected

separately in each orthogonal plane and a resulting plane segmen-

tation. Each plane is depicted in a different color.

regions for geometric context computation in case of poorly

textured environments in the spirit of [7], see Fig. 1.

We formulate the rectangle detection as a labeling prob-

lem in the Markov Random Field (MRF) framework where

the underlying graph structure is obtained by detected line

segments connected through Constrained Delaunay Trian-

gulation. The proposed approach allows to detect par-

tial rectangles, facilitates edge sharing between neighboring

rectangles, and rectangle-in-rectangle configurations. Fur-

thermore, we demonstrate their effective matching in the

presence of large changes in viewpoint by endowing them

with the Discrete Cosine Transform based descriptor. Fi-

nally, their consequent piecewise planar 3D reconstruction,

as shown in Fig. 1, is obtained by plane sweeping.

Related work. Several approaches for localization of

rectangular structures have been proposed in the past. With

the exception of few, they typically start with the detection



of line segments and a subsequent estimation of orthogonal

vanishing directions. The approach of [15] proceeded with

instantiation of planar hypothesis in a bottom up manner by

linking and grouping detected line segments to form initial

rectangular hypothesis. The rectangular regions obtained in

such a manner have a small extent and are prone to mis-

matching especially in the presence of repetitive structures.

In the work on symmetry-based 3D reconstruction [18] rect-

angles are extracted by using color segmentation allowing

only for structures with uniform appearance. In [10] mul-

tiple rectangle hypotheses are found by exhaustive compu-

tation of intersections between line segments coming from

different orthogonal vanishing directions. Subsequently the

hypotheses are verified by checking gradient consistency in

the regions with the vanishing directions. This method is

computationally very expensive generating many superflu-

ous hypotheses. Moreover, the hypothesis verification uses

strong assumptions about appearance which is not valid in

many environments. The approach of [6] utilizes both ge-

ometric and luminance constraints and the rectangle detec-

tion is formulated as a search for most likely associations of

pairs of line segments. All possible pairs of lines are con-

sidered and the most compatible assignments are obtained

in the relaxation framework. The applicability in outdoor

scenarios is hampered by the luminance dependent compo-

nents of the compatibility term used in the relaxation.

The approach most similar to ours in the sense of using

the MRF and context sensitive grammar rules for rectan-

gle detection is work of [4]. Our work focuses on the sim-

pler task of the detection of individual rectangles instead

of modeling their mutual alignment resulting in lower com-

putational requirements. We formulate the detection of the

rectangles on a restricted neighborhood structure given by

Delaunay triangulation to keep the problem tractable and

efficient, while solvable on a global level.

The detected rectangles as salient regions offer nice

properties in context of wide baseline stereo match-

ing (WBS) where notable progress, reviewed in [11, 13],

has been made utilizing interest points or regions. Although

the descriptors of these primitives have favorable invariance

properties, their applicability is still limited to relatively

small out of plane rotations and affine distortions. Difficult

cases still arise when the viewpoint change is very large and

perspective distortion becomes significant. The importance

of the rectangles in this context is underlined by their ability

to tackle the perspective distortion directly.

Difficulties in successfully matching points and line seg-

ments across multiple-views with large baseline have com-

pelled researchers to employ assumption on piecewise pla-

narity of observed urban environments to produce a reason-

able 3D reconstruction [2, 17, 1, 3]. Building on the advan-

tageous properties of the detected rectangles, we demon-

strate how to use the plane sweeping idea to instantiate ad-

ditional rectangles lying on a non-dominant plane and hence

facilitate piecewise planar 3D reconstruction.

The structure of the paper is the following. We explain

the MRF-based detection of rectangles in Sec. 2 and their

favorable use for the WBS matching in Sec. 3 demonstrated

on some example images in Sec. 4. We will also briefly

show in Sec. 4 how to use the rectangles as features of in-

termediate support to compute the geometric context from

a single image.

2. Detection of rectangles

We aim at the detection of those rectangles in an im-

age of man-made environment which are perspectively pro-

jected into the image as quadrilaterals aligned with two out

of three dominant scene directions. These dominant direc-

tions are captured in the image via vanishing points. To

tackle the quadrilateral detection in an effective way we for-

mulate the problem as a search for the Maximum Aposteri-

ori Probability (MAP) solution of the MRF defined on lines

consistent with the vanishing points. Such formulation al-

lows to avoid an exhaustive search over rectangle hypothe-

ses coming from all possible intersections of detected lines

in the image [10]. The proposed strategy restricts the space

of accepted rectangles directly in the inference stage by im-

posed grammatical rules.

The main steps of our method are the following. i) Line

segments and vanishing points are localized and used for

camera auto-calibration. Each line segment is assigned to

its corresponding vanishing direction. ii) A graph repre-

senting the MRF is constructed from the detected line seg-

ments respecting vanishing direction assignment and geo-

metric properties between pairs of the neighboring lines;

encoded via data and smoothness terms. iii) The MAP is

computed yielding a unique label, representing one of four

rectangle edges, assigned to each line segment such that

meaningful rectangles are established.

2.1. MRF formulation

We formulate the MAP of the MRF via the equivalent

MAX-SUM labeling problem. First, we give its formal defi-

nition and later, in the next section, we explain meaning of

the introduced symbols in connection to the particular prob-

lem been solved in this paper.

Let us define a triplet (G,X ,g) as an instance of the

MAX-SUM problem where the symbol G = 〈T , E〉 denotes
a graph consisting of a discrete set T of vertices and a set

E ⊆
(

|T |
2

)

of pairs of those vertices. Each vertex t ∈ T is

assigned a label xt ∈ X where X is a discrete set of nodes.

Let the elements gt(xt) and gtt′(xt, xt′) express qualities

given to node xt in vertex t and pairwise qualities on edges

between nodes xt, xt′ between two vertices t and t′, re-

spectively. A MAX-SUM labeling is a mapping that assigns



a single label xt to each vertex, represented by a |T |-tuple
x, which maximizes the following sum of unary and binary

functions of discrete variables

x∗ = argmax
x∈X|T |

[

∑

t

gt(xt) +
∑

{t,t′}

gtt′(xt, xt′)
]

. (1)

For better understanding of the symbols in the MAX-SUM

formulation, we refer the reader to Fig. 1 in [16].

Recently, very efficient and fast algorithms for solving

the MAX-SUM problem through linear programming relax-

ation and its Lagrangian dual have been reviewed in [9, 16].

Although, finding a global optimum of Eq. (1) is not guar-

anteed, as the problem is NP-hard, it has been shown that

often the optimal solution or one very close to it can be re-

liably achieved.

2.2. Graph construction

In this section we describe the construction of the graph

G, introduced in the previous section, and design the func-

tions gt(xt) and gtt′(xt, xt′) from Eq. (1). The graph G is

built from the line segments belonging to two vanishing

points. For a typical image of a man-made environment,

where three orthogonal vanishing points are detected, three

independent graphs can be constructed. The problem of the

detection of rectangles separates then into searching for the

rectangles in three mutually orthogonal planes.

Line segments and vanishing points. We extract line

segments by polygonalisation of edges obtained by the

Canny edge detector and split them at high curvature

points followed by total least squares line fitting. The

detection of vanishing points is carried out adopting

the EM technique proposed in [10] followed by the

Kanatani’s renormalization-based refinement and camera

calibration [8]. In principle, the proposed method does not

depend on the strategy used for localization of the line seg-

ments and the vanishing points.

Graph structure. The line segments belonging to two

vanishing points represent the set T of graph vertices. The

line pairs, i.e. the set E , are established from all pairs of

line segments connected by the Constrained Delaunay Tri-

angulation (CDT). An example of the constructed graph G
is shown in Fig. 3.

Adding more pairs into the graph or using connectivity

other than given by the CDT would not affect following for-

mulations. Of course, if more pairs are established the prob-

lem becomes more complex and there is a higher chance of

the MAX-SUM solver to converge to a local optimum.

Labels. We define |X | = 7 labels. The basic labels

{1, 2, 3, 4} correspond to four single edges of a rectangle
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Figure 2. Visual meaning of the proposed labels.

respecting the position of both vanishing points; the extra

labels {5, 6} denote shared edges between two rectangles;

and {7} is the label for “non-rectangle” line segments not

consistent with any rectangle, see Fig. 2. The line segments

marked by the extra labels {5, 6} represent edges shared by
two rectangles. Such lines can be considered as having two

basic labels simultaneously, i.e. {5} is {3, 4}, and {6} is

{1, 2}, see Fig. 2.

Data term. The data term or the unary function gt(xt)
from Eq. (1) captures the membership of each line segment

to a particular label. The line segments consistent with the

vanishing point v1, resp. v2, may get labels {1, 2, 6, 7},
resp. {3, 4, 5, 7}, see Fig. 2. This is expressed in the fol-

lowing data term

gt(x) =

{

[ 0 0 a a a b c ]⊤ line t → v1

[ a a 0 0 b a c ]⊤ line t → v2.

(2)

The constant a < 0 is the cost that a line segment aligned

with one vanishing point is consistent also with the second

vanishing point. This double assignment is not allowed and

therefore a is set to a very small number, meaning high cost.

The constant b is the cost of a line segment to have shared

labels {5, 6}. It is set to a < b ≤ 0 as we allow these labels

while preferring the basic ones. The number c < 0 is a cost

for the “non-rectangle“ line assignment.

Smoothness term. The smoothness term or the binary

function gtt′(xt, xt′) from Eq. (1) between each established

pair of line segments {t, t′} captures cost of all possible la-

bel combinations of that pair. Two scenarios can happen

that two line segments t and t′ are assigned to

1. the same vanishing point, either v1 or v2. A line passing

through a particular vanishing point is fitted to the end

points of two line segments t and t′ in a least sum of

square manner with an error ǫ. The line segments can

be either parallel or one is a continuation of the other. If

they are parallel, the line segment projections onto the

fitted line overlap and the pair {t, t′} is removed from

the graph G. The removal of all such pairs allows the

rectangle-in-rectangle structure to be detected andmakes



the optimization problem in Eq. (1) more tractable. The

removal of some pairs can be seen in Fig. 3. If the pair is

preserved, the following edges are created

gtt′(i, j) = −ǫ, ∀i, j ∈ X : i = j. (3)

2. two different vanishing points. Let x = lt × lt′ be an

intersection point of two lines lt, lt′ and let dt, resp. dt′ ,

be the distance between x and the closest end point of

the line segment t, resp. t′. Denote γ = dt + dt′ , then

if γ > const remove the pair {t, t′} from the graph G,
otherwise

gtt′(i, j) = −γ, ∀(i, j) ∈ A×A′. (4)

The label sets A and A′ depend on position of the point

x w.r.t. both vanishing points and the line segments t,

t′. In general, four different cases can occur, e.g. for the

intersection point x1 in Fig. 2 and lt → v1, lt′ → v2,

A = {1, 6} and A′ = {4, 5}, for the point x2, A =
{2, 6} and A′ = {4, 5}, and analogously for other two

cases.

To properly handle the “non-rectangle” label {7}, in

each pair {t, t′} we need to create edges between that la-

bel and all other labels, i.e. the edges gtt′(i, 7), gtt′(7, i),
∀i ∈ T are added and set to δ. In our case, δ = 5 γ as we

want them to be more expensive than other edges. Not es-

tablished edges gtt′(i, j) stand for edges set to −∞ as such

labels are not allowed to occur close to each other.

The smoothness term could possibly be weighted by the

confidence of prolongations of two considered line seg-

ments to a possible rectangle corner, e.g. by checking gradi-

ents along the prolongations, or testing for the presence of

Harris corners.

2.3. Parsing of rectangles

After establishing and appropriately setting the data and

smoothness terms, the publicly available MAX-SUM solver1

is used to solve Eq. (1). As a result, a unique label is as-

signed to each line segment, see Fig. 3. To get final rectan-

gles a recursive parsing is performed. It starts from each line

segment in the graph G, respecting the graph connectivity,

and searches for possible paths following the topological

structure of the state machine

1 2 34

where the numbers stand for the labels. If a line segment

is labeled by any of the extra labels {5, 6}, the segment is

considered to have both basic labels {3, 4}, resp. {1, 2}. At
this stage, we can decide for the type of rectilinear structure

1http://cmp.felk.cvut.cz/cmp/software/maxsum/code
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Figure 3. A toy example of the detection of rectangles. Left: An

input image with two sets of line segments (bold), where each

set is consistent with one vanishing point, connected by the CDT

(dashed). Right: Result after the labeling. Each line segment is

labeled by a unique label. Note that some of the connections were

removed during the procedure.

we want to parse from the labeled line segments. This is

controlled by a required number of different labels in each

path in the above state machine, i.e. 2 for L-shapes, 3 for

U-shapes, 4 (without the final loop) for incomplete, and 4
for complete rectangles, see Fig. 5.

3. Wide baseline stereo matching

Motivated by the class of matching problems men-

tioned in the introduction, we demonstrate how the detected

quadrilaterals in two views along with a suitable descriptor

offer an alternative way to find their matches. This is espe-

cially useful when point/region based matching techniques

cannot reliably establish correspondences. The primary ad-

vantage is that the robustness w.r.t. viewpoint change and

perspective distortion is naturally handled by a homogra-

phy warping of the quadrilaterals to their canonical rect-

angular patches. In the next we assume that the vanishing

points detected in two views separately are alreadymutually

matched.

3.1. Region Descriptor

Each detected quadrilateral region can be warped to a

s× s square patch through a homography [5]. The parame-

ter s in pixels controls the resolution of the canonical patch

(we use s = 50). The canonical square patch can be effi-

ciently represented by low frequency coefficients of the Dis-

crete Cosine Transformation (DCT)2. This has been shown

in [14] to be an efficient and slightly superior way of obtain-

ing a patch compared to the SIFT descriptor [11]. The main

reason we adopted the DCT is that the descriptor captures

low frequencies as opposed to the SIFT relying on high fre-

quencies like edges which are often not present or weak in

many rectangles.

Before computing the DCT, the patch is photometrically

normalized by transforming the R, G, B color channels to

have zero mean and unit variance. Then the DCT is com-

puted on the patch for each channel separately. The de-

scriptor is composed of the first low frequency coefficients

2usually hardware supported because of widespread use in image com-

pression (JPEG, MPEG, etc.)



Figure 4. Examples of matched rectangles mapped to 50 × 50

square patches and their reconstructions from low pass DCT co-

efficients.

(reverted diagonals) as proposed in [14]. Moreover, three

additional numbers are stored, two for the chromacity vec-

tor computed over three color channels and one for the rect-

angle height/width ratio α explained in the next section.

3.2. Single­view geometry

Given the detected quadrilaterals and assuming that we

are viewing rectangleswe can estimate their dimensions and

their relative 3D poses. The basic element of the pose es-

timation is the homography matrix H0i ∈ ℜ3×3 mapping

points xi from i-th view of the quadrilateral to the points

xπ of its canonical rectangle, i.e.

xi ≃ K[R | t]X = K[r1 r2 t]xπ = H0i xπ. (5)

The rectangle is assumed to lie on a plane π, its points are

X = [X Y 0 1]⊤ as the origin of the world coordinate

system is in the plane and the z axis is perpendicular to that

plane. K3×3 is a known calibration matrix, R = [r1 r2 r3]
is a rotation matrix, and t is a translation vector. For more

detail see [5].

Let us consider a canonical rectangular region S speci-

fied by 4 corner points stacked as columns in the matrix

Sπ =





0 0 α s α s

0 s s 0
1 1 1 1



 , (6)

where s is the height of that rectangle in 3D and α is an ratio

between its height and width. It has been shown in [10] that

one can estimate the unknown parametersα, s, and 3D posi-

tion R, t (up to scale) for each quadrilateral. The parameter

α is part of the descriptor vector and the 3D pose is later

used in the plane sweeping algorithm.

3.3. Matching

Given the descriptor vectors of all detected quadrilat-

erals in two views, we establish their tentative matches.

The matching score is computed as a Euclidean distance on

those matches passing a pre-test on having a similar ratio α

and chromacity vector. For each quadrilateral the k-nearest

matches are stored (we use k = 3). We assume one domi-

nant plane in the scene and therefore the tentative matching

is followed by a homography-based inlier selection. The

quadrilaterals bring significant advantage over interest point

matching as only one match is needed to compute the ho-

mography matrix in contrast to four points in the general

case. Standard RANSAC-based estimation can be avoided

and a simple exhaustive search can be employed. To find

more matches on the dominant plane the estimated homog-

raphy is employed in the guided matching respecting both

the Sampson error [5] and the descriptor distance.

3.4. Plane sweeping

Once the dominant plane with supporting quadrilateral

matches is found, one can search for additional matches on

parallel planes by the sweeping strategy proposed in the fol-

lowing.

First, we estimate the position of the dominant plane and

both cameras. The estimated rotation matrices, Eq. (5), of

all matched quadrilaterals on a dominant plane in each view

must be the same. Therefore, we compute one mean rota-

tion matrix for each view, R̂ = [r̂1 r̂2 r̂3] and R̂
′, as a mean

over all rotations R, R′ of the matched quadrilaterals, pro-

jected back to the manifold of rotation matrices (R̂ = U V
⊤,

where [U D V] = svd(R̄) [5]). Prime symbols stand for esti-

mates in the second view. The translation vectors t̂, t̂′ are

taken from the match giving the smallest Sampson error.

Second, the sweeping is done by sliding a plane, parallel

to the dominant plane, in 3D forward and backwards in h

increments along the z-axis. At each height a shifted ho-

mography is computed and quadrilaterals consistent (small

descriptor distance) with that homography are established

as new matches. The composite shifted homography which

maps a point from the first image to the second, assuming

that the corresponding 3D point lies on a parallel plane to

the dominant one, can be computed as

H
h
12 = H

h
02 (Hh

01)
−1,where (7)

H
h
01 = K[r̂1 r̂2 hr̂3 + t̂], H

h
02 = K

′[r̂′1 r̂′2 hr̂′3 + t̂′]

are shifted homographies mapping points from the shifted

canonical plane to image planes. The plane sweeping de-

clares more matches which otherwise would not be found

using only appearance based matching and allows direct 3D

reconstruction of the parallel planes. It is especially use-

ful for images with repetitive structures containing parallel

planes, see Fig. 8.

4. Experiments

An example of the detection of full rectangles, incom-

plete rectangles, and U-shapes can be seen in Fig. 5. Each

U-shape is closed to two rectangles by completing the



Figure 5. Types of rectilinear structures. Left: Full rectangles.

Middle: Incomplete rectangles. Right: U-shapes completed to

rectangles.

fourth missing edge by a line passing through one of the

U-shape end points and a corresponding vanishing point. In

our remaining experiments we use the closed U-shapes pro-

viding more hypotheses for subsequent stages. Examples of

extracted U-shapes in indoor images are depicted in Fig. 1

and Fig. 7. In the rest of the paper we show only matched

rectangles to avoid too cluttered images.

We evaluated the proposed method for the detection of

quadrilaterals followed by two-view matching on a large

variety of images. Some representative ones are shown

in Fig. 6. The first four are from the ZuBuD3 database con-

sisting of 640× 480 images, the last 1126× 844 image was

taken by ourselves. Overall, their quality varies since they

were taken by different, to us unknown, cameras under dif-

ferent illumination conditions. Despite that and moreover

suffering from considerable wide baseline, light reflections,

shadows, jpg-artifacts, occlusions, and repetitive structures

the matching results show feasible and stable performance.

For descriptor vector we used 10 reverted diagonals from

the DCT on a 50 × 50 square resulting in 66 numbers for

each color channel.

The plane sweeping is demonstrated in Fig. 8. Once a

dominant plane with supporting quadrilateral matches was

found, the plane sweeping from Sec. 3.4, was performed

and new matches on different but parallel planes were es-

tablished, see Fig. 8. The advantage of the sweeping is ev-

ident as two additional planes where just few rectangles

are present were still found. Standard sequential search

for homography consistent sets of inliers [5], where at each

stage already found inliers are dropped and a new plane is

searched for, was not able to find the few matches out of the

dominant plane. Due to large spatial support of the quadri-

laterals the accuracy of their localization is not so crucial

compared to other salient point detectors. They are often

followed by a noise sensitive point triangulation to obtain

a 3D reconstruction. I our case, we already have the 3D

poses of the matched quadrilaterals, parsed from the homo-

graphies in Eq. (7), and therefore the 3D model can directly

be built, shown in Fig. 1.

The last briefly mentioned application is the use of rect-

angles as support regions for the computation of geometric

context from a single image. In this case the goal is to la-

3http://www.vision.ee.ethz.ch/showroom/zubud

Figure 8. The plane sweeping. Each image is matched with the

image from Fig. 1. The resulting matched rectangles are shown in

different color associated to the plane they belong to.

bel individual superpixels as belonging into one of the three

orthogonal planes. The quadrilaterals impose constrains on

overlapped superpixels and significantly help to increase the

stability of this ill-posed problem [12]. An example with

comparison to [7] can be seen in Fig. 7 and in Fig. 1.

From computational complexity point of view the pre-

sented method for detecting rectangles is comprised of effi-

cient steps, i.e. searching for lines, vanishing points, com-

puting the CDT, running the MAX-SUM solver, and recur-

sive parsing of the rectangles. The running time of the first

four stages is under 5 secs, the last stage takes from few to

tens of secs on a modest notebook using Matlab / C imple-

mentation. However, it could be speeded up significantly.

5. Conclusions

We have presented a method for the detection of perspec-

tively distorted rectangles, exploiting solely geometric cues.

Compared to previously published work, our method is

computationally efficient and we can effectively detect par-

tially occluded structures, such as U-shapes,and L-shapes,

and rectangle-in-rectangle configurations. Furthermore, we

have demonstrated how the rectangles can serve as features

of intermediate complexity, in the context of wide baseline

matching tasks. The capability of detected regions of large

image support is advantageous, as they are less ambiguous

compared to single points and can be matched more reli-

ably.

The approach has been verified by extensive experiments

in indoor and outdoor environments presenting results of

both the detection and the matching stages. The quality of

the detected structures largely depends on the quality of the

detected line segments which could be improved by using

more elaborated line detection techniques.
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