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Abstract

Motivated by recent approaches to object recognition,

where objects are represented in terms of parts, we pro-

pose a new algorithm for selecting discriminative fea-

tures based on strangeness measure. We will show that

k-nearest neighbour strangeness can be used to mea-

sure the uncertainty of individual features with respect

to the class labels and forms piecewise constant deci-

sion boundary. We study its properties and general-

ization capability by comparing it with optimal decision

boundary and boundary obtained by k-nearest-neighbor

methods. The proposed feature selection algorithm is

tested both in simulation and real experiments, demon-

strating that meaningful discriminative local features

are selected despite the presence of large numbers of

distractors. In the second stage we demonstrate how

to integrate the local evidence provided by the selected

features in the boosting framework in order to obtain

the final strong classifier. The performance of the fea-

ture selection algorithm and the classifier is evaluated

on the Caltech five object category database, achieving

superior results in comparison with existing approaches

at lower computational cost.

1. Introduction

In many supervised learning tasks, the input data
is often represented by a large number of often high
dimensional features. Even state-of-art learning algo-
rithms cannot overcome the presence of a large num-
ber of weakly relevant or irrelevant features. Once a
good set of features is obtained, even the very basic
and simple classifiers can achieve high performance.
Additional benefits of feature selection are in reducing
the measurement and storage requirements, reducing
the complexity of learned models, defying the curse of
dimensionality to improve prediction performance and
facilitating data visualization and data understanding.

In general setting, given the training features F =
(F1, · · · , FN ) ∈ ℜd×N , where Fi is a point in R

d, there

are two different feature selection directions: one is to
select the optimal subspace along the column direction
of the feature matrix F - variable selection; the other
one is to select the optimal sub-instance along the row
direction of F - feature instance selection. The first
direction is widely researched in the machine learning
field, where one assumes that each instance of F has
some contribution for classification and tries to find
the optimal subspace and compact representation. The
second direction is commonly encountered in the com-
puter vision community, in the context of part based
representations of objects and object categories.

Our work is motivated by several recent approaches
to weakly supervised learning of object categories as
well as general object recognition, which consider rep-
resentations of objects in terms of parts [4] . Learning
of the object parts for different categories which con-
stitute visual vocabularies used to built object models
is often the first stage of existing approaches. Most
frequently this stage is addressed by clustering local
features corresponding to salient regions in the im-
age [2]. The number of detected features is typically
quite large, with many features coming from the back-
ground, yielding large visual vocabularies, with many
superfluous clusters. Furthermore, k-means clustering
is often unstable when the space is populated by a large
number of distractors. In other recognition tasks, such
as recognition of object instances, actual instances of
discriminative features need to be learned to obtain
good models [9]. This stage can hence greatly benefit
from the feature instance selection process.

To tackle these issues we propose a new fea-
ture selection algorithm based on k-nearest-neighbour

strangeness measure; k-NN strangeness is the ratio of
the sum of k nearest distances from the same class di-
vided by the sum of k nearest distances from all other
classes. We first study strangeness properties and show
how they can be used to measure the uncertainty of the
individual features with respect to the class labels and
to construct the decision boundary. We then introduce
the proposed feature instance selection algorithm and
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test it both in simulation and real experiments. We
demonstrate the performance of the feature selection
algorithm on a object category recognition task demon-
strating that meaningful discriminative local features
are selected despite the presence of a large number of
distractors. The selected features constitute different
instances of parts. In the second stage we show to
integrate the local evidence provided by parts in the
boosting framework, with the strangeness used as weak
hypothesis. The second stage can be viewed as another
feature selection strategy, in which boosting will select
the most discriminative parts.

2. Related work

Feature Selection Different feature selection algo-
rithms can be broadly divided into two categories:
filters and wrappers. The filter approaches evaluate
the relevance of each feature (subset) using the data
set alone, regardless of the subsequent learning phase.
RELIEF method [12] and information theoretic meth-
ods [15, 9] are the representatives of this class. The
philosophy behind the information theoretic methods is
that the mutual information between relevant features
and class labels should be high. In computer vision an
example of this approach is [2], where scale-invariant
image features are extracted and ranked by a likeli-
hood or mutual information criterion. On the other
hand, the wrapper approaches [6] use a learning algo-
rithm to evaluate the quality of each feature (subset).
In the learning phase Boosting [16, 14], Bayesian ap-
proach [4], decision trees [9] were used in the past and
the feature relevance was assessed by the estimation of
the classification accuracy. Wrappers are usually more
computationally demanding, but can be superior in ac-
curacy when compared with filters. Both approaches
involve combinatorial search through the space of pos-
sible feature subsets with different types of heuristics.

Strangeness The strangeness measure used in our
approach is the ratio of the sum of the k nearest dis-
tances from the same class to the sum of the k near-
est distances from all other classes. The approach
falls into the category of non-parametric data driven
approaches for classification, such as prototype and
nearest neighbour methods. In case of parametric ap-
proaches, Bayesian inference is often used to estimate
the posterior probability of the class. However, the
optimality of the Bayesian method is based on the as-
sumption that the data we observe are generated ac-
cording to one of the distribution models in the chosen

class of models. While this assumption is attractive
for theory, it rarely holds in practice. In the context of

general classification tasks, instead of assuming a fam-
ily of models, Vovk et al [13] introduce an individual

strangeness measure and construct the confidence ma-
chine using the algorithmic theory of randomness and
transductive inference. While in inductive inference,
where training data is used to find some approxima-
tion of functional dependency between data and class
labels (which is then evaluated at points of interest), in
transductive inference the value of the function is eval-
uated only at points of interest. The simplest method
of this type of inference is k-nearest neighbour method.
The strangeness αi of a particular example xi measures
the uncertainty of that example with respect to its la-
bel and all other examples: the higher the measure,
the higher the uncertainty. It is, in fact, the discrim-
inanation ability of that example. Hence, strangeness
measure can be used either for classification or feature
selection, which will be shown in the later sections.

3. Strangeness Measure

Several strangeness definitions were proposed [5, 8],
which need complex learning strategies and high com-
putational costs. There are several simpler definitions
which do not require complex learning procedures. If
the example of class j is sampled from a Gaussian
model, the distance from example x

j
i to the mean x̄j

is defined as the strangeness:

αi = ‖xj
i − x̄j‖, where x̄j =

1

Nj

∑

k

x
j
k.

Without any assumption about distribution D of z =
(x, y), where y is the class label, k -nearest neigh-
bor classifier is widely used in [10, 13] to define the
strangeness measure if the examples are measurable
in some metric space. Assume we have C classes, for
class c = 1, · · · , C, let us denote the sorted sequence
(in ascending order) of the distances of example xc

j

from the other examples with the same classification
c as dc

j and dc
jl will stand for the lth shortest distance

in this sequence. Let d−c
j denote the sorted sequence

of distances containing examples with a classification
different from c. For each example, the individual
strangeness measure is assigned as:

αj =

∑k

l=1 dc
jl∑k

l=1 d−c
jl

. (1)

The measurement for strangeness is the ratio of the
sum of the k nearest distances from the same class
to the sum of the k nearest distances from all other
classes. This definition of strangeness is very natural
and straightforward. An example is considered strange



if it is in the middle of examples labeled in a differ-
ent way and is far from the examples labeled in the
same way. The strangeness of an example increases
when the distance from the example of the same class
becomes bigger or when the distance from the other
classes becomes smaller. The strangeness defined in
Equation 1 is related to k -nearest neighbor classifier
(k-NN). However, for multi-class classification, the def-
inition in Equation 1 does not consider the frequency of
each class in the neighborhood of the example, as does
in k-NN classifier. As the result, we modify the defini-
tion in Equation 1 and re-define the k-NN strangeness
as:

αj =

∑k

l=1 dc
jl

minn,n6=c

∑k

l=1 dn
jl

, (2)

where in the denominator is the class, with the minimal
sum of k-NN distances. In the following subsection, we
will discuss its properties and show how it is related
optimal decision boundary and the posterior P (ci|xi).

3.1.k-Nearest Neighbor Strangeness

In this section we will study the properties of
k -nearest neighbor strangeness (as defined in Equa-
tion 2), how it can be used to build the decision bound-
ary between classes and how it is related to the dis-
crimination ability of each example. The Cover-Hart
theorem proves that asymptotically the generalization
error of 1-NN classifier can exceed by at most twice
the generalization error of the Bayes optimal classi-
fication rule. They also showed that the k -NN er-
ror approaches the Bayes error (with factor 1) if k =
O(log n) [1]. The generalization power of k -NN classi-
fier enables the k -NN strangeness to have the similar
properties. On average, the examples with α = const

build the piecewise linear boundary between class ci

and all other classes. Asymptotically, the examples
with α = 1 will build the optimal boundary between
two classes. Those examples can be considered as sam-
ples from the optimal Bayes classification boundary
which serves as the ground truth if the data distribu-
tion and prior are known. To demonstrate this effect,
consider a two-class classification first. Let examples
(z1, · · · , zn) = ((x1, y1), · · · , (xn, yn) be drawn inde-
pendently from the same distribution over Z = Xd×Y

where Y is the label space {0, 1}. For each class
ci, the data is generated independently from a Gaus-
sian distributions P (x|ci) = N(x; µi, Σ

−1
i ) and priors

pi = P (ci), i = 0 or 1. Let the means of two classes
be [0, 0]T and [5, 5]T with the same covariance matrix
Σ = diag{σ, σ}. Both classes have the same number
N of samples, that is p0 = p1 = 0.5. In 2D sepa-
rable case the advantage of the strangeness measure
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Figure 1. Top: the boundaries with different k and different
N for two Gaussians. Bottom: the boundaries constructed
with different N for Gaussian mixtures.

is not so apparent. In real applications the classes
are rarely well-separable; and the data are often in
a high dimension space. Therefore, we focus on the
comparison with non-separable data sets in a high di-
mensional space. Fig. 1 a) and b) shows two Gaussians
with σ = 3, and a different number of training ex-
amples N with k =

√
N . Fig. 1c) and d) shows the

optimal boundary, and the boundaries of strangeness
and k -NN, respectively, when two classes are mix-
tures of Gaussian distribution. Class 0 has the three
modes with the means {[2, 2], [−1, 1], [5, 2]} and covari-
ance matrices {diag([1.5, 1.5]), diag([1, 1]), diag([1, 1])},
respectively. Class 1 has also three modes with the
means {[1,−2], [−2,−1], [3, 0]} and the same covari-
ance matrices as class 0. Each mode has the same
weight in both classes. For each class, N training exam-
ples are randomly drawn. Note that while both bound-
aries are far from the optimal boundary, the boundary
constructed by strangeness is much more smooth and
closer to the optimal boundary. When k is small, the
strangeness smoothes many isolated regions created by
k -NN classifier. If we consider the problem in a regu-
larization framework, strangeness introduces a smooth
penalty term, which is defined through the examples
with the parameter k. The boundaries constructed de-
pend highly on the training examples while they both
converge to the optimal boundary as N → ∞. Let’s
now consider the generalization ability of both classi-
fiers and evaluate their test errors. For each N , dif-
ferent training and testing sets are sampled in 100 tri-
als. Fig. 2 (a)-(d) shows the optimal Bayesian error,



test errors of k -NN and strangeness classifiers, and the
corresponding error standard deviation over the tri-
als. We evaluate these for 2D Gaussian distributions
(a),(b) and mixtures of Gaussians (c),(d). For 2 (e)
and (f) considers two d -dimensional Gaussian distribu-
tions with means [0, · · · , 0] and [5, · · · , 5], respectively.
Assume they have different covariance matrices such
that the optimal classification boundary is no longer
a hyperplane. The two covariance matrices are ran-
domly generated. In d dimensional space, each class
has N training examples randomly sampled from the
distributions above. Another 10000 examples are ran-
domly generated for testing. Fig. 2e), f) show the test
errors of k -NN and strangeness (α = 1) in different
dimensional spaces, d from 2 to 100. It clearly shows
the strangeness has better performance over k nearest
neighbor classifier no matter the dimensionality of the
representation. Note that the error of strangeness and
its standard deviation are always lower than those of
the corresponding k -NN classifier, which is consistent
with the conclusion from the comparison of the bound-
aries. The smooth term of the classification function
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Figure 2. The test errors and their standard deviations.
Top: two Gaussians. Middle: Gaussian mixtures. Bottom:
high dimensional Gaussians; the test errors with respect to
the dimensionality given fixed N of training examples.

reduces the test error and hence improves the general-
ization capability of the algorithm.

So far we have only compared the classification per-
formance of the strangeness measure. Note however,
that although both classifiers have close performance,
the strangeness not only yields the “bare prediction” as
k -nearest-neighbor does, it also gives the “confidence”
or “reliability” of the prediction: the higher the mea-
sure, the higher the uncertainty of the prediction. It
can be further shown that the strangeness measure has
a monotonic relationship with margin, posterior and
odds. This is the key property which we will use for
feature selection and the classifier design.

4. Feature Instance Selection Algorithm

In the previous section we presented the definition of
the strangeness, studied its properties and its general-
ization capability. Next we will show how strangeness
can be used to evaluate the feature relevance.

In order to deal with the large variation of object
appearance, due to occlusions, pose variation, defor-
mation, and size, many appearance-based approaches
to object recognition characterize the objects by image
features, corresponding to local image regions. These
can be either directly image patches [9] or affine invari-
ant regions and their associated descriptors [4]. Each
image is represented by Mi features {gj} in d dimen-
sional space. Many of the generative approaches men-
tioned earlier [2, 4] use k-means clustering in the first
stage to create a visual vocabulary of parts. The num-
ber of clusters and clustering algorithms can have a
great influence on the performance and generalization
ability of the final classifier. Since the features from the
background are assumed to be distributed uniformly in
the descriptor space, a large number of irrelevant fea-
tures may yield large number of clusters and overwhelm
the relevant features in the clustering algorithm. As we
will demonstrate next, a simple and efficient algorithm
for discarding the irrelevant features and selecting the
discriminative features for later learning stages can suc-
cessfully tackle some of the above mentioned problems.
The algorithm is based on the strangeness measure α

which is used to evaluate the relevance between each
local feature and the class label of whole image.

Strangeness Feature Instance Selection Algorithm 1
is an iterative backward elimination method. The algo-
rithm repeatedly iterates over the feature set and up-
dates the set of chosen features. There is one threshold
in the algorithm γ, which determines the features to
be eliminated in each iteration and controls the largest
strangeness, that is, the minimal margin, of the chosen
features in the end. The algorithm can be applied very
efficiently if suitable data structures are used, because



Algorithm 1 Strangeness Feature Instance Selection

1. Given local features {gi} in R
d and class label.

2. Compute the strangeness of each feature gi based
on Equation 2.

3. Initialize the threshold of strangeness γ.

4. for t = 1,2,...,T

• Select the features {gk} with the strangeness
αk ≥ γ.

• Discard {gk} and update the strangeness of
remaining features.

• If the strangeness of all features is less than
γ, terminate.

5. end for

only small portion of strangeness values needs updat-
ing in each iteration. Compared with other feature
selection algorithms, Algorithm 4 not only has the ad-
vantage of filter approaches – evaluating the relevance
of feature and simple, but also have the properties of
wrapper approaches – related to the predictor general-
ization performance.

5. Experiments and Evaluation

In this section, we demonstrate the behavior and
performance of the Strangeness Instance Feature Se-
lection Algorithm on a small synthetic two-class clas-
sification problem. Consider two classes with different
kinds of features sampled from different distributions.
As shown in Fig. 3(a), the first class has two kinds
of features sampled from two distributions: Gaussian
distribution D1 with mean [0, 0]T and standard de-
viation σ = 2, and uniform distribution D0 over re-
gion (3.5, 8.5)× (−8.5,−3.5); the second class also has
two kinds of features sampled from two distributions:
Gaussian distribution D2 with mean [3, 5]T and stan-
dard deviation σ = 2, and uniform distribution D0 over
region (3.5, 8.5) × (−8.5,−3.5). For each distribution
in each class, 300 points are randomly sampled as the
training data set. Note that two different classes have
the features sampled from the same distribution D0,
which, in the context weakly supervised object recog-
nition task, would correspond to background features.
Fig. 3(b) shows the selected features. As we can see
from the figures, the most informative feature points
are kept and most features with low discriminative abil-
ity are discarded. Only a very small number of fea-
tures is chosen from D0. This demonstrates that the

proposed feature selection method effectively discards
irrelevant features and hence, can precede many of the
standard learning algorithms which attempt to learn
generative models. Note that in the second example
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Figure 3. The features in the original data sets and the
results after feature selection.

all the disctractor features have been successfully elim-
inated. This number of remaining features is function
of threshold γ.

The presented feature selection algorithm is next ap-
plied on weakly supervised object category recognition
using Caltech database. The more detail information
about the data base can be found in [3]. Fig. 4 shows
the original features detected and the features chosen
by the algorithm. As expected, most of the selected
features are on the objects while most background fea-
tures are discarded. After the initial feature selection,

Figure 4. The original features detected and the selected
feature set.



most local features in training images now have strong
relevance with respect to the classification and the com-
plexity of the classification task is highly reduced.

5.1. Final classifier

In this section, we show how selected local fea-
tures can be used as local classification evidence which
can be integrated in the boosting framework with the
strangeness based weak classifier. After feature selec-
tion, each training Ik image is represented by the se-
lected feature set {gk

j }, with each feature having its as-
sociated strangeness computed from Equation 2. Con-
sidering strangeness as the base classifier, we can ap-
ply the AdaBoost algorithm on the selected feature set
directly. However, several features may be extracted
from almost the same location of the same object yield-
ing redundant information. If each feature is consid-
ered as a weak classifier as in [11], the final strong clas-
sifier will be overfitting and have the low generalization
capability. For example, eye is a very important fea-
ture to distinguish face from other objects. If the final
strong classifier has several “eye” weak learners, it has
high probability of misclassifying the test face if the
“eye” feature is not detected in the image. In order
to achieve high generalization ability of the final classi-
fier, we first reduce the information redundancy among
local features by clustering them into parts, and then
model the local classification evidence by a model-free,
non-parametric approach using the strangeness of each
feature instance in each part. Figure 5 shows the parts
of the motorbike and faces categories after feature se-
lection based on strangeness and clustering. The evi-
dence provided by individual parts is then integrated in
the second stage in the boosting framework, where we
design a strangeness based weak learner for each part.
This can be viewed as another feature selection stage,
in which boosting will select the most discriminant and
reliable parts.

Part 1 

Part 2 

Part 3 

Part 4 

Part 5 

Part 1 

Part 2 

Part 3 

Part 4 

Part 5 

(a) Face Parts (b) Motorcycle Parts
Figure 5. Grouped object parts - weak rules in boosting.

Starting with the training data set, we have now each
object category c represented by P parts, each of which
has Ni feature instances Gc

i = {gi
j}Ni

j=1. Instead of

parametric modelling of the clusters, we keep their fea-
ture instances as the training gallery, apply the base
classifier on P parts and learn the coefficients and
thresholds of weak learner through validation data set.
Given the validation image Vi and its local features
descriptor {g(Vi)j} with putative object label c, the
matched features {g̃(Vi)

c
j}P

j=1 are found which are the
closest feature from {g(Vi)j} to each part of class c in
the gallery. Then the strangeness {αc

i} of {g̃(Vi)j}P
j=1

are computed with the assumption of putative class
c. With C classes in the training gallery, C groups of
strangeness are obtained for each validation image. If
M validation images are given for each class, for each
part of each class, we have M positive strangeness mea-
sures and M(C − 1) negative ones. Our weak hypoth-
esis is to select the matched feature {g̃(Vi)j}P

j=1 and
the strangeness threshold Tj for each part of the class.
The Algorithm 2 describes the strangeness based weak
learner.

In this manner we can obtain a weak classifier for
each of the P parts, where the thresholds and the co-
efficients of the weak classifiers are learned in the vali-
dation stage. The Strangeness Weak Learner is model-
free and non-parametric, and as simple as the stump
function. The main computational burden is the cal-
culation of strangeness of g(Vi)j with putative label
c, since it needs distance from g(Vi)j to all features in
the training gallery. However, such computation can be
done prior to Boosting and weak learner finder. The
remaining calculations in Boosting are very inexpen-
sive. Drawing an analogy between weak classifiers and
features, this learning model is another aggressive fea-
ture selection mechanism for selecting a small set of
“good” features which nevertheless have significant va-
riety. Finally C group of coefficients {βc

t }P
t=1 are ob-

tained, which tell the importance of each part for each
subject. The coefficients are then normalized such that∑P

t=1 βc
t = 1. Final decision rule for the query image

Q then has a following form:

f c(Q) = β1h1(Q) + . . . + hp(Q).

The testing proceeds in the way similar to the valida-
tion stage. We demonstrate the performance of the fea-
ture selection algorithm on the object category recog-
nition tasks using 4 object categories: motorbike, air-
plane, faces and cars(side) and background class. In-
stead of just discriminating the object category from
background as in [4, 3, 11, 2], we propose a two-stage
hierarchical boosting learning to distinguish the object
from both the background and other objects. At first,
the strangeness feature instance selection algorithm is
applied between objects and background examples and
a two-class boosting learner is learned to distinguish all



Algorithm 2 Strangeness Weak Learner

• Input : Training gallery {Gc
j}P

j=1, c = 1, · · · , C,
where Gc

j is the feature instance set of jth part of
class c, and validation images {Vi, i = 1, · · · , MC}
and associated feature {g(Vi)k}.

• Strangeness computation : For each part j of
class c, find the nearest feature g̃(Vi)j between
{g(Vi)k} and Gc

j . The strangeness of g̃(Vi)j is then
computed as defined in equation 2 with the puta-
tive the class label c of Vi. Each part of class c

now has MC strangeness {αc
k}MC

k=1, M of which
are positive and M(C − 1) are negative.

• Strangeness sorting : For each part j of class c,
let π(1), · · · , π(MC) be the permutation such that

αc
π(1) ≤ αc

π(2) ≤ · · · ≤ αc
π(MC).

• Select the threshold of weak learner : For each
part j of class c, find the best position s such that
the maximal classification rate is achieved:

rate(j) = max
s

s∑

k=1

wπ(k)h(απ(k))

where h(απ(k)) is 1 if απ(k) is positive and 0 other-
wise. Then the threshold of current weak learner
is:

θ(j) =
απ(s) + απ(s+1)

2
.

• Select best weak learner : Find the best part
m = maxj rate(j). Then the best weak learner of
current round is the mth part with the best thresh-
old Tm = θ(m). Update the weight wk and com-
pute coefficient βt according to error 1− rate(m).

object categories from the background category. Based
on the features selected in the first stage, further fea-
ture selection is done and another one-vs-all boosting
learner is used to classify different object categories.
In the second stage, the label of query image Q is
predicted by argmaxP (c|Q). It is necessary to use
these two stages. Since the background features are
uniformly distributed in feature descriptor space, we
cannot model the background with parts. As a result
we cannot reliably estimate P (background|Q). Given
the estimated P (c|Q), it is very hard and almost impos-
sible to find a threshold τ such that Q is background
if maxP (c|Q) ≤ τ . To avoid estimating such a thresh-
old, the boosting effectively deals with the background.

The high performance can be achieved in this stage
since more features will be used, some of which have
no discriminative power for classification of object cat-
egories but have the ability to distinguish objects from
background.

For each object, we randomly sample 30 images as
the training gallery, 30 images as the validation data
set and use the remaining images and the background
images for testing. The features are detected by affine
covariant regions and represented by SIFT descriptor.

Figure 6(a) shows the ROC curves of our approach
on the first database when P = 30 and k = 5. Fig-
ure 6(b) shows the performance with respect to the
number of parts P . Table 1 shows the equal error
rates of our approach compared with the other two
approaches. Our method is a little better than both
of them except for the faces. From the results in Fig-
ure 6(b) we can see our approach is very stable when
the number of parts P is in the range [25, 50]. When P

is too small or too large, the classifier learned performs
poor. When P is small, too little evidence is integrated
from the local parts and the final strong classifier does
not have enough discriminative power. When P is too
large, similar features may have multiple clusters and
redundant information exists between weak hypothe-
ses; thus the final strong classifier will be overfitting.
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Figure 6. (a) The ROC curve for image classification on the
faces, motorbikes, airplanes and cars(side) data set used by
Fergus et al. [4]. (b) The equal error rates with respect to
the number of clusters P.

Table 1. The ROC equal error rates on the database used
by Fergus et al. [4]

.
Dataset Our approach Fergus Opelt

Motorbikes 96.1% 92.5% 92.2%
Faces 94.4% 96.4% 93.5%

Airplanes 93.7% 90.2% 88.9%
Cars(side) 93.1% 88.5% 83.0%

In the second stage, a one-vs-all boosting classifier



is learned on the features selected in the first stage.
It distinguishes each object from all other object cate-
gories, not just at the level of chance as shown in Table
2 in [4]. The work in [3, 11, 2] did not report how their
approaches perform on the separation of each category
from the others. Table 2 presents the performance of
our learning approach across the four classes. Very
good recognition rates are achieved. The model for
each object successfully rejects the input images from
other objects.

Table 2. The performance of the final strong classifier in the
second stage on the database used in [4]

.
Dataset Motorbikes Faces Airplanes Cars

Motorbikes 93.1% 2.5% 1.6% 2.8%
Faces 1.1% 93.4% 4.5% 1.0%

Airplanes 2.0% 0.0% 95.4% 2.6%
Cars(side) 2.1% 0.0% 6.9% 91.0%

6. Conclusions

We have described a new feature instance selection
algorithm based on strangeness measure. In simula-
tion, we have demonstrated its properties and relation-
ship to some baseline classifiers. The proposed algo-
rithm was tested on object category recognition tasks
assuming representations of objects in terms of parts.
We have shown that the algorithm selects meaningful
features and achieves better or comparable classifica-
tion accuracy at a fraction of the computational cost.
Although the presented work was largely motivated by
the problem of learning of models for object recogni-
tion, the outlined algorithm is applicable in general set-
tings. In the future we plan to extend this approach to
a variable feature selection and test the accuracy of the
final classifiers on the available benchmark datasets.
We are also currently pursuing more detailed theoreti-
cal analysis of the bounds on error rates, convergence of
the proposed algorithm and connections between other
related methods [7].
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