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Abstract. The capability of associating semantic concepts with avail-
able sensory data is an important component of environment understand-
ing. In this work we describe an approach for annotation of dominant
image regions of uniform appearance, which are typically encountered in-
doors, such as doors, walls and floors. One of the main challenges behind
correct classification of these regions requires handling large changes in
the appearance as a function of lighting conditions. Instead of using large
amount of training data taken under different illumination conditions, we
propose an online updating of the model learned from a small number
of training examples in the initial frame. We follow a two stage classifi-
cation strategy: first we estimate the probabilities of individual regions
belonging to each class based on appearance only; in the second stage
we use Markov Random Fields (MRF) to exploit spatial layout of the
scene and improve classification results. The appearance model learned
in the first frame is updated in subsequent frames using the confidences
obtained by the two stage classification strategy. We demonstrate our
approach on two sequences of indoor environments.

1 Introduction

The focus of research in robot perception has been in the past predominantly
on metric environment representations and robot localization. The environment
models were typically described in terms of simple geometric features, such as
points, lines and planes. More recent works on topological representations and
place recognition proposed to endow environment models with some semantic
labels, such as rooms, doors, corridors [1, 2]. These type of annotations can be
used for enhancing human robot interaction, enable more robust localization or
can provide priors for object detection and recognition.

In this work we describe an approach for annotation of dominant image
regions of uniform appearance, which are typically encountered in indoor envi-
ronments, such as doors, walls and floors. In this setting the correct classification
of these regions requires handling large changes in the appearance as a function
of lighting conditions. This in turn requires large amount of training data or
careful design of image representations/descriptors which are invariant to these
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changes [3]. In order to overcome the difficulties of collecting large amount of
training data, we propose in this work a strategy for on-line updating of the
model learned from a small number of labeled training examples in the first
frame of the sequence. First, we learn the probabilities of regions belonging to
individual classes based on appearance only from these labeled examples. Markov
Random Fields (MRF) are then used to exploit spatial layout of the scene to im-
prove classification results. The subsequent video frames of the image sequence
are then classified by updating the initial models using high confidence regions as
well as regions which can be tracked successfully. We demonstrate our approach
on two indoor sequences with different variations in appearance and resolution.

Related work. Interesting results in robotic settings have been obtained regard-
ing semantic classification of locations [1] and place recognition [4]. More recently
there has been a surge of interest in endowing the acquired maps with additional
semantic information, which would better facilitate environment understanding
and human-robot interaction. Several approaches have been explored and varied
based on the type of sensors and classification approach used. In [5] authors
tackle the problem of obtaining a model of the environment defined by instan-
tiations of objects of predefined classes (e.g., doors, walls) given range data and
color images from an omni-directional camera. In [6] authors used relational
Markov Networks to learn classifiers from segment-based representations. Based
on laser data, the regions of the environment are classified as walls, doors and
other. More recently in the robotic context the semantic labeling techniques have
been extended to multi-sensor approaches where both visual data and laser data
are used for multi-class object/scene label recognition [7, 8]. Issues of model up-
dating using only visual information and range data have been used effectively
in [9] for road/no-road classification, and a proposal for on-line model update
using only visual data for place recognition was presented in [10]. Multi-class ter-
rain classification for outdoor setting has been demonstrated in [11]. The problem
of building cognitive maps of indoor environments has also been studied by [2].

In computer vision, several multi-class image segmentation techniques were
proposed which aim at concurrent multi-class object recognition and strive to
classify all pixels in an image [12–15]. Most of the techniques proceed by model-
ing local appearance signals associated with pixels or small regions and encode
preferences for smoothness, which are typically encoded by constructing a (con-
ditional) Markov Random Field over image pixels or image regions. Most of the
experimental evaluations in this setting is done using static images only. Issues
of on-line learning of object category models have been explored in [16].

2 Our Approach

The main ingredients in the semantic labeling problem are the choice of labels
(number of classes) and a classification strategy to discriminate between different
classes. Figures 1(a)-(b) show a reference image from our experiments and the
type of labels we seek to assign.
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(a) (b) (c) (d)

Fig. 1. (a) Initial frame (b) ground truth labels: doors (blue), floor (red), wall (green),
others (yellow) (c) extracted superpixels (d) superpixels used as training examples.

In the majority of previous approaches the learning and testing stages were
completely decoupled. First a labeled data set is used to train the classifier,
followed by the testing stage on the subset of the perceptual data withheld in
the training stage. Since we strive for pixel accurate labeling, the process of col-
lecting the training data is quite time consuming as it requires assigning labels
to individual regions of large set of images. Although several databases with
labels are available for analysis of static images, as used in [12], the semantic
categories are typically not well applicable for indoor environments. In our prob-
lem domain we would like to annotate indoor video sequences by assigning one
of the following labels χ = {door, wall, f loor, other} to each pixel. This type
of regions do not fall into an ’objet category’, but often constitute large areas
of the image and hence can be regarded as background. Some of these regions
(e.g, floor, door) can serve as important cues for navigation: floor/wall labels
can determine what is drivable and doors can serve as important way-points for
making navigation decisions. Besides, we would like to explore the possibility
of learning simple appearance models of a small number of categories from a
few labeled examples and then update the models as additional examples are
found based on confidences of their classification. Since in a robotic setting we
naturally work with visual data streams, the model update process will greatly
benefit from the temporal coherence of the perceptual data. The goal is to obtain
a fully segmented and labeled video sequence from a minimal supervision at the
beginning of the sequence.

2.1 Segmentation and labeling

The set of images was segmented into superpixels using a color based segmen-
tation algorithm proposed in [17]. Figure 1(c) shows an example of a reference
image segmented at the finest level tried (σ = 0.5; k = 500; min size = 20)
where σ is the initial smoothing of the image, k is the maximum number of
segments and minimal segment size is 20. Other segmentation algorithms would
work as well. Superpixels will subsequently constitute the elementary regions
to be classified. For each superpixel, we compute the color moments in RGB,
HSV and/or Lab spaces (in the following experiments we use only means as the
higher order moments were not beneficial in our setting). The number of pixels
and position (centroid) are also computed for each superpixel to help in the
model update process. More complex features can be designed to allow better
generalization to different environments.
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Initial Frame Classification. We first describe a method for classification of
a single frame of the video sequence. Given a small number of training examples
(labeled superpixels) in the first frame, we first assign probabilities over different
classes to every superpixel in this frame.

We have explored two approaches, generative and discriminative, to learn the
labels model and to classify the individual superpixels. In the discriminative set-
ting we have tried the GentleBoost classifier as described in [18]. The generative
model is trained by fitting a Gaussian mixture model (GMM) to each class label,
using the standard expectation-maximization (EM) algorithm. In this paper we
only describe in detail the generative model approach and its results since this
method was superior in our preliminary tests compared to the discriminative
approach.

MRF formulation. To account for the spatial relationships between super-
pixels, we define a Markov Random Field, whose graph structure is induced
by superpixels and their neighborhood relationships. The final annotation is
formulated as the maximum a posteriori (MAP) estimate of the MRF via the
equivalent max-sum labeling problem. Given a graph consisting of a discrete
set T of vertices, each vertex t ∈ T is assigned a label xt ∈ X . Let the ele-
ments gt(xt) and gtt′(xt, xt′) express qualities given to label xt in vertex t and
pairwise qualities on edges between nodes xt, xt′ between two vertices t and t′,
respectively. A max-sum labeling is a mapping that assigns a single label xt to
each vertex, which maximizes the following sum of unary and binary functions
of discrete variables:

x∗ = argmax
x∈X|T |

[ ∑
t

gt(xt) +
∑
{t,t′}

gtt′(xt, xt′)
]
. (1)

For better understanding of the symbols in the max-sum formulation, we refer
the reader to Figure 1 in [19]. Recently, very efficient and fast algorithms for
solving the max-sum problem through linear programming relaxation and its
Lagrangian dual have been reviewed in [20, 19]. Although finding a global opti-
mum of Eq. 1 is not guaranteed, as the problem is NP-hard, it has been shown
that often the optimal solution, or one very close to it, can be reliably achieved.

In our case the set of labels is χ = {door, wall, f loor, other}. The data term
gt(xt) label can be intuitively explained as posterior distribution over all classes
for that node given the sensory data. In the generative setting we use, this is
modeled as a mixture of Gaussians (l = 5 per class) for each label. Instead
of using the entire probability distribution to determine the probability of a
superpixel having particular class label χ, we find the Gaussian with the highest
probability and assign that probability to the superpixel:

P (t|xk) = max
l

1√
(2π)d|Σl

k|
exp(

1

2
(ut − µl

k)T (Σl
k)−1(ut − µl

k)). (2)

where u is the vector of color means computed for superpixel t. In the data
term gt(xt) the complement of the probability is being used since the data terms
correspond to the penalty of an energy function being minimized. The pairwise
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term gtt′(xt, xt′) controls the mutual bond of neighboring superpixels and is in
our case modeled as color mean difference between superpixels.

Figure 2 shows the initial frame classification results with the generative
model without (on the left) and with the MRF smoothing (in the middle). We
also use the horizon line to eliminate possibility of certain labels, e.g. the prob-
ability of being floor for all superpixels above the horizon is set to 0. The table
in Fig. 2 shows the confusion matrix in the labeling with regard to the ground
truth for this frame. Each row presents the actual classification for all pixels
from a particular label in the ground truth, e.g., from the pixels labeled as wall
in the ground truth 95% were properly labeled as wall by the automatic process,
while 5% were confused with other labels.

Wall Floor Door Other
Wall 0.95 0.02 0.01 0.02
Floor 0.00 0.98 0.01 0.007
Door 0.02 0.07 0.81 0.1
Other 0.02 0.09 0.42 0.5

Fig. 2. Left: First frame (see Fig. 1) classification without and with MRF and hori-
zon constraint. Here and in the remaining figures, the brighter colors in the image
correspond to the higher the confidence in the classification. Right: Confusion matrix.

2.2 Model Update

Once we have obtained the initial model M0 from the reference labels Lref ,
and processed the first frame I0 to get its dense labeling L0, we propagate and
update these models to the rest of the sequence. Our goal is to have the best
possible model at each frame instead of obtaining a model which could be used
for classification of the entire sequence. The updating process is summarized
in Algorithm 1. The model Mi is obtained using the following samples: labeled
examples Lref in the initial frame, high confidence regions in the current frame
L̃i, which were obtained by the classification using the model Mi−1, and high
confidence regions L̃i−1 from previous frame. We first tried to update the GMM
by keeping the gaussians with higher mass for each class and replacing the ones
with smaller mass with new gaussians fitted to the new superpixels selected
L̃i. This approach had important drawbacks, since gaussians representing the
appearance of smaller regions (having lower mass) tended to disappear very
quickly. The approach we have used at the end to update the GMM consists
of fitting from scratch the model to the set of selected labels: Lref + L̃i−1 +
L̃i. Since the descriptors dimension is very low and the number of gaussians per
class is small as well, this estimation process is very fast and assures constant
size of the models.

The probability of a region belonging to a class depends on the distance to
the GMM weighted by the percentage of regions adjacent to the corresponding
superpixel in the previous frame that had that label (wtrack). A region is con-
sidered high confidence when its probability of belonging to a class is more than
0.5 and its size is above some threshold.
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Besides, in the update stage we estimate a Fundamental Matrix F between
consecutive frames, from SURF [21] correspondences, and use this F to establish
correspondences between superpixels. Regions whose correspondences have been
established and have the same label will also be selected as high confidence
regions and used for model update, even if their likelihood was below 0.5. In
case F cannot be estimated due to large motions between two views we do not
try to track the labels. In this case, we suppose the image divided in a 5x5 grid,
and we weight the probability of each label in each of those grid cells depending
on how many times a label has appeared in the sequence in that cell (wfreq).

Algorithm 1: Model Initialization and Update Process
M0 = estimateGMM (Lref ) /* estimate GMM from labels Lref in I0 */

L0 = classify(I0, M0) /* classify pixels in I0 using model M0 */

for i = 1 to n do
wfreq = updateW(Li−1, wfreq) /* count labels in each 5x5 grid cell */

F = robustEstimationF(Ii, Ii−1) /* compute F */

if F then
Li = classify(Ii, Mi−1, wtrack) /* MRF labeling */

Ci = findSuperpixelCorrespondences(F, Ii, Ii−1)
L̃i = selectExamples(Li, Li−1, Ci) /* take high-confidence labels */

wtrack = getTrackWeights(Li−1) /* count neighbors labels in Li−1 */

Mi = estimateGMM(L0, L̃i, L̃i−1) /* estimate new model */

Li = classify(Ii, Mi, wtrack)
else /* do not update the model in this step */

Mi= Mi−1

Li = classify(Ii, Mi, wfreq)

3 Results

This section shows examples of labeling the dominant regions in typical indoor
sequences starting from a few samples in the first frame.

Test 1. The data used in this test consists of 40 frames (resolution 640x480)
extracted equally along an indoor sequence. We have labeled every third frame
for evaluation as ground truth. All superpixels were extracted with the algorithm
from [17] and the color descriptors are the mean values of HSV and Lab spaces. In
this test, the Fundamental Matrix between frames was computed from SURF [21]
points correspondences.

Figure 1(a) shows the first frame of this test sequence, and Fig. 1(d) the
labels used to learn the initial models. Then we classify all superpixels in this
frame to get a dense labeling as shown in Fig. 2. Later we propagate the labeling
to the rest of the sequence as explained in Sec. 2.2. Figure 3 shows the labeling
obtained for frames along the sequence using the static initial model or the
dynamically updated one with and without the MRF. We can see from these
results the improvements of applying the model update and the MRF smoothing
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as opposed to using the constant initial model for the whole sequence. The
sequence consists of three smaller subsequences. Between each subsequence a
sudden change occurs, e.g. 90o rotation, which breaks completely the image flow
between last frame from one subsequence and first frame of the second one. Rows
1,2 and 4 in Fig. 3 correspond to the end of each subsequence. These sudden
changes are automatically detected because it is not possible to robustly estimate
the F matrix at that points.

(a) (b) (c) (d) (e)

Fig. 3. Test 1. Labels propagation on the sequence frames (a). Results using the initial
model without (b) or with MRF (c), or the dynamically updated model without (d)
or with MRF (e).

The bar plots on top of Fig. 4 present a summary of the results in the
classification for all frames with ground truth available. There, each subplot
corresponds to one label, and each bar to one of the reference images with
ground truth available. Each subplot shows which percentage of the area with a
certain label in the ground truth was classified with each of the possible labels,
e.g., first bar at first subplot shows that most wall area in the ground truth of
first reference image was correctly classified as wall, while a small percentage was
confused with the other three possible labels. We should note that the process
seems able to recover from mistakes, e.g., in the third example in Fig. 3 big areas
are incorrectly labeled, however, after a few steps, the quality of the labeling in
the last frame of the sequence (row 4 in the same figure) has improved a lot.
We can see in the subplots this evolution along the sequence: at some point
the classifications get quite low results, but it does not propagate them too far,
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thanks to the fact that the models always keep robust hints from the intial
frame or those from robust correspondences. The majority of wall and door
labels are correct, while the other two labels, floor and others, present worse
results. However, we should notice that one of the more common mistakes in
these classification is other labels classified as door, and this is due to the fact
that most other labels correspond to furniture that is made of the same material
than doors. Other issue to point regarding these results is that most confusions
of the three background labels were with the other label.

The Table at the bottom of Fig. 4 shows the average confusion matrix, using
the dynamically updated model, for all samples in the tree subsequences or only
in the first one. These ratios have the same meaning as in Table in Figure 2
and are the average values for the whole sequence. As could be expected, the
performance decreases after each of those sudden changes, we observe better
rates if we evaluate only the first subsequence than if we evaluate the whole
sequence together.
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First sub-sequence (until image 7)
Wall Floor Door Other

Wall 0.94 0.006 0.05 0.01
Floor 0.20 0.5 0.3 0.006
Door 0.01 0.001 0.98 0.008
Other 0.08 0.005 0.5 0.4

All sub-sequences
Wall Floor Door Other

Wall 0.70 0.002 0.27 0.04
Floor 0.20 0.24 0.55 0.01
Door 0.06 0.001 0.93 0.01
Other 0.16 0.003 0.62 0.22

Fig. 4. Test 1. Top: classification results for each label. Bottom: average confusion
matrix for all reference images.
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Test 2. In this second test, we only show the automatic labeling obtained
because we did not have ground truth to get more precise performance measure-
ments as in previous test. We use two subsequences (resolution 320 x 240) from
the public dataset LabelMe 1. In this case the segmentation is done into smaller
superpixels. See Fig. 5 to get a qualitative idea of the results obtained for these
two sequences. We should notice the similarly good behaviour with much lower
quality images, e.g., last example in test2A is quite blurred.

Test 2A Test 2B

(a) (b) (a) (b)

(c) (d) (c) (d)

(c) (d) (c) (d)

(c) (d) (c) (d)

Fig. 5. Test 2. sequences labeling: walls (green), floor (red), doors in 2A or kitchen fur-
niture in 2B (blue) and other (yellow). Reference labels (a), first frame classification (b)
and other sequence frames (c) with classification results (d).

4 Conclusions

We have demonstrated an approach for semantic labeling of large regions of uni-
form appearance in indoor environments. The main goal is to segment the whole
sequence, from minimal supervision in the initial frame, into dominant regions
and smaller areas containing unknown objects. We introduced a two stage clas-
sification strategy, where we first learn the probabilities of superpixels belonging
to individual regions regardless their spatial relationships, followed by solving a
MRF classification. The main novelty of the approach was the idea of updating
the appearance model using the high confidence regions and region correspon-
dences. The updating yielded notably better classification, reduced dramatically
the number of required labeled examples and enables us to use rather simple
generative models. The currently encountered errors are due to the fact that the
features used are rather weak and do not capture any geometrical relationships

1 http://labelme.csail.mit.edu/
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of individual labels. Furthermore in many cases the confusions occur in case the
concepts cannot be disambiguated based on visual information only. In the fu-
ture work we plan to extend the work by incorporating additional features and
explore alternative means for modeling temporal relationships in the sequence.
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