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Abstract

Finding correspondences between two (widely) separated
views is essential for several computer vision tasks, such as
structure and motion estimation and object recognition. In
the wide-baseline matching using scale and/or affine invari-
ant features the search for correspondences typically pro-
ceeds in two stages. In the first stage a putative set of cor-
respondences is obtained based on distances between fea-
ture descriptors. In the second stage the matches are refined
by imposing global geometric constraints by means of ro-
bust estimation of the epipolar geometry and the incorrect
matches are rejected as outliers. For a feature in one view,
usually only one ”best” feature (the nearest neighbor) in the
other view is chosen as corresponding feature, despite the
fact that several match candidates exist. In this paper, we
will consider multiple candidate matches for each feature,
and integrate this choice with the robust estimation stage,
thus avoiding the early commitment to the ”best” one. This
yields a generalized RANSAC framework for identifying
the true correspondences among sets of matches. We exam-
ine the effectiveness of different sampling strategies for sets
of correspondences and test the approach extensively us-
ing real examples of hard correspondence problems caused
by a large motion between views and/or ambiguities due to
repetitive scene structures.

1 Introduction

Correspondence problem is one of the key problems in com-
puter vision. Many vision tasks such as motion estima-
tion and recognition require, or can greatly benefit from a
set of corresponding points between the views. When try-
ing to find correspondence1 for a feature in one view, usu-
ally only the nearest neighbor (1-NN) in the second view
which meets some matching criterion is selected as match.
Once putative correspondences are obtained, usually robust

1Points in different views are in correspondence when they are projec-
tion of same 3D point.

techniques (e.g. RANSAC2 Algorithm) are used to im-
pose global geometric constraints and identify the true cor-
respondences.

In wide-baseline matching using scale and/or affine in-
variant features commonly used matching criteria are: dis-
tance between feature descriptors less then some threshold,
similarity more than some threshold, or distance ratio be-
tween the nearest neighbor and the second nearest neighbor
less than some threshold. Although in many instances the
1-NN rule is sufficient, it does have some deficiencies. As
Figure 1 illustrates, the nearest neighbor might not be the
correct correspondence when the local neighborhoods un-
dergo large distortion, the descriptors change dramatically
and are no longer sufficiently reliable. This is more likely
when the scene contains similar repetitive structures, such
as buildings and windows. As a result, if the ratio crite-
rion is used, the number of true correspondences included in
the correspondences set might be low. One way to increase
the number of true correspondences is to loosen the match-
ing threshold. However, it has been noticed that matches
with lower matching scores have lower probability to be
correct [1]. Moreover, the probability decreases very fast
as the matching score goes down. Thus solely lowering the
threshold is not a good solution for increasing correspon-
dences. In other instances [2] multiple matches are kept,
followed by additional verification based on an affine align-
ment to eliminate the incorrect matches. This stage is how-
ever quite computationally intensive if applied to all candi-
date matches.

Second, the sets of matches are often not symmetric,
i.e., M(I1, I2) 6= M(I2, I1), where I1 and I2 are two
images. This is due to the fact that multiple features in
the query image can be matched to the same feature in
the reference image, while every feature in the query im-
age should only have one match in the reference image.
Consequently, if the number of matches is used as sim-
ilarity measure between images for recognition purposes,
the fact that Sim(I1, I2) 6= Sim(I2, I1) affects the recog-
nition rate. In [3], the authors suggested to tackle the

2RANdom SAmple Consensus.
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Figure 1: The closest matches in the second view (col-
ored red) are not the true correspondences, even though the
true correspondences (colored blue) also pass the matching
threshold, they won’t be retained by the 1-NN rule .

problem using bi-directional similarity measure, defined as
Sim(I1, I2) = (M(I1, I2) + M(I2, I1))/2, which requires
doubling of the computation time for finding matches.

Given the fact that 1-NN is not a reliable rule for find-
ing correct correspondences, we propose to avert the early
commitment to the nearest neighbor and leave the identifi-
cation of the correspondences to later stage. With the pro-
posed rule, all the features in the second view which pass the
matching criterion are retained, thus for ith feature f1

i in the
first view, a match set {(f1

i , f2
j )}, j = 1, . . . , ni, rather than

one match will be associated with it, where ni represents the
number of matches for the ith feature; ni depends on how
many features meet the matching criteria and is not fixed.
The sets of matches of all the features will be the input of
the second stage, where a generalized RANSAC framework
will be used to identify the true correspondences and esti-
mate the motion parameters.

Related work Significant amount of work on different
feature detectors and descriptors has been proposed in the
literature [4, 5, 6, 7]. The SIFT features proposed by [4]
achieved best performance in the matching context based on
comparison tests reported by Mikolajczyk and Schmid [8].
Ke and Sukthankar [9] developed the SIFT descriptor by
applying PCA to image patches detected by SIFT demon-
strating further improvement in their experiments. In [10],
the author proposed to augment SIFT with a global context
vector to handle scene with similar regions.

Despite the fact that great progress has been made in
the past, in many domains matches obtained by compar-
ing feature descriptors are often not reliable. In order to
identify true correspondences, global geometric constraints
(e.g. epipolar constraints) are usually used in connection
with robust estimators. Examples include M-estimator [11],
The Least Median of Squares (LMedS) Estimator [12].
RANSAC introduced by Fishler and Bolles [13] is the most

popular robust estimation technique used in computer vi-
sion community. Many works have been proposed to im-
prove the standard RANSAC, which often requires large
number of samples and has a costly hypothesis evaluation
stage. Chum and Matas [14] suggested to improve the ef-
ficiency of standard RANSAC by a pre-evaluation called
Td,d test. Even though the number of samples increased a
lot, time is saved because only a fraction of data points is
evaluated. In [15], the author proposed to select sample sets
of adjacent points based on the assumption that the inliers
will tend to be closer to one another than the outliers. Torr
and Zisserman [16] have noticed that the traditional inlier
count approach is faulty, since it treats all inliers equally
(error terms for inliers are constant). They suggested using
a log likelihood of solution as a support instead of the num-
ber of inliers. Tordoff and Murray [1] proposed to guide the
sampling by the quality of matches to improve the sampling
efficiency. The possibility of keeping multiple matches was
also mentioned but not fully exploited. Based on the as-
sumption that the similarity measure predicts correctness of
a match better than a random guess, Progressive Sample
Consensus [17] has been shown to be more efficient than
RANSAC.

2 Keeping multiple matches
We describe our and test our method using SIFT keypoints
and their associated SIFT descriptors, which have been
shown to be superior in the previously mentioned compar-
ison experiments. The proposed methodology is applica-
ble to other existing features. Two features f1

i and f2
j are

matched, when the cosine of the angle between their de-
scriptors d1

i and d2
j is above some threshold τc. The cosine

measure between two vectors v1 and v2 is defined as:

cos(v1, v2) =
vT
1 v2

‖v1‖2‖v2‖2 . (1)

Though τc is usually set to be fairly high, τc = 0.95 in
our experiments, still multiple features pass the threshold
for some features. Alternatively one can use threshold re-
lated to the range of Euclidean distances between the two
descriptors. We keep all the matches which pass the thresh-
old, because experiments showed that matches with scores
higher than the threshold have good chance to be true cor-
respondences. If only the best one is selected, some true
correspondences might be omitted.

Let σk be the fraction of points which have correct cor-
respondence listed in the set of k matches. We have carried
out an initial experiment to see the relationship between
σk and k and obtained a cumulative distribution function
(CDF). The probability distribution function (PDF) can be
estimated by subtracting consecutive entries of CDF, each
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entry of PDF represents the probability that kth match is
the true correspondence. The experimental results shown in
Figure 2 were obtained based on an average of 5 widely sep-
arated image pairs. We can see that the 1st nearest neighbor
has the highest probability to be true correspondence, yet
the probability is low and σ5 ≈ 2σ1. Therefore, keeping
multiple matches rather than only the best one can increase
the number of true correspondences remarkably. In some
scenes where repetitive structures are abundant, for exam-
ple the building in Figure 1, the nearest neighbor can easily
be some similar feature in a wrong location. In such a case
σ1 is relatively low and keeping multiple nearest neighbors
is even more advantageous. The match set Ci for the ith

feature is Ci = {(f1
i ,m1), (f1

i ,m2), . . . , (f1
i ,mni

)}, mj

is the index to features in the other view. Let the number
of features which have nonempty match set to be N . The
match sets between two views are {C1, C2, . . . , CN}, whose
cardinality is Nm =

∑
i ni.
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Figure 2: Left: the relationship between σk and k. Right:
the probability that kth match is the true correspondence.

Keeping a set of matches instead of one match requires
some modifications to a standard RANSAC framework (de-
scribed in next section). If applying RANSAC directly to
the matching result, then it’s possible that a sample contains
several matches of the same feature in the first view, making
it impossible to solve motion parameters. In the next sec-
tion, we propose a generalized RANSAC framework to ad-
dress the problem. We will show additional benefits of the
generalized RANSAC by taking the distribution of matches
into consideration.

3 Generalized RANSAC Algorithm
The standard RANSAC algorithm consists of two steps.
First, it randomly selects M (a predetermined number) sam-
ples, the for each sample estimates a model hypothesis and
finds the support (typically, the number of inliers) for this
hypothesis. The hypothesis with the largest support is then
chosen as a model and all its inliers are used to refine the
model parameters. The inlier is defined as a data point
whose residual is within some threshold T of the hypoth-
esis. The idea is that those M samples include at least
one sample which consists of only true correspondences,
thus correct hypothesis can be obtained. Hence in order to

achieve confidence ρ that one such sample is obtained, the
required number of samples M can be computed as:

M =
⌈

ln(1− ρ)
ln(1− (1− ε)p)

⌉
(2)

where ε is the fraction of outliers (false correspondences).
In order to keep multiple matches per feature, we propose to
generalize this procedure. The sampling stage is separated
into two stages to account for the fact that there is only 1
correct correspondence for a feature in the first view. In the
first stage the features from the first view are sampled, in the
second stage the selected features’ sets of matches are sam-
pled. The generalized RANSAC algorithm is summarized
in Algorithm 1.

Algorithm 1 The generalized RANSAC procedure.

1. Repeat for Mg (the number of required samples) times

(a) Select a sample of features (in the first view)
which have a nonempty match set.

(b) For each feature in the sample, select one
match from its match set.

(c) Estimate the hypothesis parameters based on
the sample.

(d) Calculate the error of each match in C with
regard to the hypothesis.

(e) Determine the number of inliers consistent
with the hypothesis.

2. Select the model hypothesis with largest inlier support,
then re-estimate model parameters using all the inliers.

When this framework is applied to the case where each
match set only contains one match, the second sampling
stage is straightforward and the whole procedure runs the
same as the standard RANSAC. The hypothesis can be any
model which is chosen to describe the relationship between
two views, such as fundamental matrix F and homography
H . The size of the sample selected in step 1(a) depends
on the model. In our experiments, we use standard linear
algorithms to estimate F and H . Therefore, the sizes of
samples are 8 for F and 4 for H , respectively. For standard
RANSAC, the required number of sample depends on the
percentage of outliers ε as shown in Equation 2. For the
generalized RANSAC, the required number of samples Mg

is related to σk. What’s more, Mg is related to the strategy
of how to choose a sample. In the next sections we will dis-
cuss different sampling strategies for sampling the sets of
matches.
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3.1 Sampling strategies
The standard RANSAC algorithm samples the set of corre-
spondences uniformly with the underlining assumption that
the probability of each match being the true correspondence
is equal. The assumption is generally invalid as pointed out
in [1]. The authors instead suggested sampling matches ac-
cording to their match quality, taking into account the fact
that matches with higher scores are more likely to be true
correspondences. By choosing appropriate sampling strat-
egy, RANSAC can be expected to run more efficiently.

For the generalized RANSAC procedure, the second
sampling stage 1(b) which samples within the match set is
relatively straightforward. Corresponding point can be se-
lected randomly from the match set assuming each match
has roughly the same probability to be true correspondence.
Alternatively the sampling can be guided by a matching
score as mention above. This however requires knowledge
of a mapping between the matching score and the probabil-
ity of true correspondence. Currently in our experiments,
the match set is sampled uniformly; for a match in Ci, the
probability that it is selected out of Ci is 1

ni
. The first

sampling stage 1(a) requires more careful thought, since
the match sets of different features have different cardinali-
ties. Let the probability that ith feature f1

i is selected be pi,
several sampling strategies can be considered as described
next.

3.1.1 Proportional Sampling

With this strategy, we set pi proportional to the size of its
match set pi = ni

Nm
. As a result, if each match set is uni-

formly sampled, the probability that a candidate correspon-
dence is selected would be:

ni

Nm
× 1

ni
=

1
Nm

. (3)

Clearly, each individual match has the same probability to
be selected. Thus sampling based on this strategy means
uniformly sampling set of all possible correspondences,
with the guarantee that no same feature from the first image
will appear in the same sample. The underlining assump-
tion of this sampling strategy is the same as the standard
RANSAC algorithm, where all the matches have the same
probability to be true correspondences. Let this probability
be 1 − εg and probability that a selected match is an out-
lier would be εg. If σk is assumed to be the same for all the
match sets, the probability that a selected match is an outlier
is:

εg =
∑N

i=1 σni∑N
i=1 ni

. (4)

Given εg, it is relatively easy to obtain number of samples
Mg in this case, which is of the same form as in Equa-

tion 2. We have obtained a preliminary relationship be-
tween σk and k in Figure 2 based on a small set of images.
Even though more thorough experiments are needed to ob-
tain a more accurate relationship, we do see an approximate
trend here: σ1 > σ2/2 >, . . . , > σk/k. σ1 is exactly the
ε for the standard RANSAC algorithm. This means that
if the matching criterion is the same (the same threshold),
the proposed rule will return the match set with more frac-
tion of outliers (because the total number of matches in-
creases). This does not seem desirable. Note however, that
with the same matching threshold, the proposed rule returns
more true correspondences. If 1-NN rule is used instead, a
lower threshold must be used to return the same number of
true correspondences. In other words, we can use a higher
matching threshold for the proposed rule (retain multiple
matches) and still get a comparable number of true corre-
spondences. Note the outlier percentage is not necessarily
higher. The reason is the following: the probability of true
correspondences decreases very fast as threshold decreases;
in order to return the same number of true correspondences,
the match set returned by 1-NN rule would contain much
more outliers, probably even more than that of the proposed
rule. Using the proposed rule and this sampling strategy, the
generalized RANSAC procedure would not require more
samples than using 1-NN rule and standard RANSAC.

The assumption that σk is the same for all the match sets
is actually inappropriate. If the match set of a feature only
contains 1 match, it means that this match is very distinctive
and it is likely to be the true correspondence. The distance
ratio criteria proposed by Lowe [4] is based on the similar
idea. The two keypoints are matched if their descriptors
satisfy:

Dist(d, d1st)
Dist(d, d2nd)

< τr, (5)

where d ∈ <n is the descriptor to be matched and d1st and
d2nd are the closest and the second closest descriptors from
the model database, with Dist(., .) denoting the Euclidean
distance between two descriptors and τr is some threshold.
On the other hand, for feature which has multiple matches,
its matches are less likely to be true correspondence. Gen-
erally, the larger the size of the set of matches, the lower the
probability that each individual match is the true correspon-
dence. Therefore, the next sampling strategy seems more
meaningful.

3.1.2 Uniform sampling

In this case, we set pi to be the same for all features, pi =
1
N . As a result, if each match set is uniformly sampled,
the probability that a single match is selected for hypothesis
estimation would be:

1
N
× 1

ni
=

1
Nni

. (6)

4



Now the matches in matching sets with low number of
points have higher probability of getting selected. For ex-
ample, if the size of a match set is half as that of another
match set, the first match in the first set has twice the proba-
bility of getting selected as the first match in the second set.
Note that if 1-NN rule is used, the two matches would have
same probability of being selected. The use of k matches
and generalized RANSAC shows an advantage here, since
the assumption that distinctive matches are more likely to
be true correspondences is in general valid.

Clearly, the generalized RANSAC algorithm can run
more efficiently (Mg is smaller) with this strategy, since
its underlining assumption is more reasonable than the first
one. To explain why Mg is smaller in this case, let’s con-
sider the following example. Consider two features in the
first view, which get 2 and 4 matches in the second view,
respectively. Assuming σk is the same for both of them
(the first strategy), σ1 = 0.3, σ2 = 0.5, σ3 = 0.6 and
σ4 = 0.65, then the probabilities that those 6 matches are
true correspondence are (0.3, 0.2) and (0.3, 0.2, 0.1, 0.05),
respectively. When taking into account that distinctive
matches are more likely to be correct, it is reasonable
that first two probabilities are higher. Suppose that they
are 0.35 and 0.25, the probabilities are now (0.35, 0.25)
and (0.3, 0.2, 0.1, 0.05). If sampling is based on the sec-
ond strategy, the probability that a chosen match is cor-
rect would be ((0.35 + 0.25)/2 + (0.3 + 0.2 + 0.1 +
0.05)/4)/2 = 0.2325. On the other hand, if sampling
is based on the first strategy, the probability that a chosen
match is correct would be the average of all those probabil-
ities: (0.35 + 0.25 + 0.3 + 0.2 + 0.1 + 0.05)/6 = 0.2083.
Thus the effective outlier percentage is lower for the second
sampling strategy, and less samples are needed to assure
a good hypothesis sample. The difference in the effective
outlier percentage would be more evident when the size of
match sets are more different. Large sets of matches can be
penalized even more, yielding the third sampling strategy.

3.1.3 Inversely Proportional Sampling

In this case, pi is inversely proportional to the size of its

match set, pi =
1

niP
i

1
ni

. As a result, if each match set is

uniformly sampled, the probability that a single match is
selected for hypothesis estimation would be:

1
ni∑
i

1
ni

× 1
ni

=
1

n2
i

∑
i

1
ni

. (7)

Now matches in matching sets with small number of
matches have higher probability of getting selected. We can
see in the probability expression of the second strategy 6,
the denominator contains a linear term in ni, while the ex-
pression for the this strategy has a term quadratic in ni. It

is straightforward to deduce that penalizing large sets more,
will result in higher order terms of ni. In the extreme case,
only features with a single match will be selected. In such
case, the probability that a single match is selected can be
represented as:

1
n∞i

∑
i

1
n∞i

, (8)

where n∞ means the infinite power of n. The members
of match sets with ni > 1 will have zero probability to
be sampled. If the assumption that the distinctive matches
are likely to be true correspondences is valid, this last ex-
treme sampling strategy would be the most effective one.
The third strategy is also more effective than the second
one, since the distinctive matches will have higher chance to
be sampled. However, the assumption might not always be
true. If we rely on the assumption and sample small match
sets too excessively, it may turn out that not enough true
correspondences can be obtained.

In practice, we adopt the second strategy, guaranteeing
that the matches in large sets will still have a reasonable
chance to be selected. We believe it is worthwhile to sac-
rifice some efficiency for better results. The suitability of
sampling strategies also depends on the scene. For instance,
for scenes with many repetitive structures, a good assump-
tion is that all matches in a set are equally likely to be true
correspondences and hence have similar probability, mak-
ing the first strategy the most suitable this case.

4 Experimental Results
We have tested the proposed framework in several wide
baseline matching and motion estimation scenarios, consid-
ering different motion models. For each image pair, the ex-
periment is repeated 5 times to assure repeatability of the
results. Due to randomized nature of the RANSAC frame-
work, the identified inliers might not be the same all the
time. However, the estimated motion parameters were con-
sistent.

4.1 Estimation of fundamental matrix
For the estimation of the fundamental matrix we have used
standard linear 8-point algorithm with normalization. The
test images contained many repetitive structures, making
the process of establishing correspondences using local fea-
tures inherently ambiguous. While there are other ap-
proaches which could be used to overcome these inherent
ambiguities by exploiting additional image structure, we
have obtained good results without excessive number of
RANSAC samples, as shown in Figure 3, 4 and 5. Given
a fundamental matrix F hypothesis, correspondences are
identified as inliers, if the Sampson error [18] is less than
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the inlier scale (set to be 2 pixel in our experiments). The
Sampson error for ith correspondence given fundamental
matrix F is defined as:

Es =
(x2T

i Fx1
i )

2

(Fx1
i )

2
1 + (Fx1

i )
2
2 + (FT x2

i )
2
1 + (FT x2

i )
2
2

, (9)

where x1
i and x2

i are image coordinates of correspondences,
and (Fx)2k represents the square of the k-th entry of the
vector Fx.

Figure 3: Left: matching result of the building with many
repetitive structures. Right: identified inliers (connected
with blue lines) using 2000 samples. Note some points
seems to be matched to wrong positions, but their matches
identified as inliers lie on the epipolar lines (green lines).

4.2 Estimation of homography

We also tested the proposed framework on planar scenes by
estimating the homography between two views. In this case,
the ith correspondence is identified as inliers of a homog-
raphy H if |x2

i − Hx1
i | < TH , where TH is the threshold

set to be 3 pixels in our experiments. Figure 6 and Fig-
ure 7 show two examples. Even though repetitive struc-
tures are abundant, correct model can be estimated using
1000 samples at most. Note that using 1-NN rule and the
standard RANSAC algorithm, correct model cannot be es-
timated with high confidence with such a small number of
samples. Using 1-NN rule, 127 matches were obtained for
Figure 6, 26 of them were correct. Using the same num-
ber (1000) of samples, out of 5 experiments, only 2 times
could the correct homography be estimated. For Figure 7,
136 matches were obtained and 37 of them were correct.
Although RANSAC could also identify correct matches us-
ing 1000 samples, the number of identified inliers using the
proposed framework is consistently higher than in case of
1-NN matching criterion and the standard RANSAC algo-
rithm. This brings the benefit of obtaining more accurate
estimates.

Figure 4: Left: matching result of an almost planar scene
with many repetitive structures. Note the points on the
small bulletin board are very important for the estimation
of F because they are the only points out of the dominant
plane. There were 209 matches and 72 of them were cor-
rect. Right: identified inliers (connected with blue lines)
using 2000 samples. Note that some points seems to be
matched to wrong positions, but their matches identified as
inliers lie on epipolar lines (green lines). We also tried us-
ing 1-NN rule and standard RANSAC. 151 matches were
obtained 60 of them were correct. With the same number
(2000) of samples, only 1 out of 5 experiments correctly
returned the matches on the bulletin board.

5 Conclusion and Future Work

In this paper, we proposed to retain a set of matches for each
feature, instead of using a single best match. We described
a generalized RANSAC algorithm to address the problem
of sampling the set of matches and discussed different sam-
pling strategies. We can see that the generalized RANSAC
algorithm can not only incorporate matching scores, but can
also take in the consideration the distribution of matches.
Thus we claim that that it addresses the multiple matches
problem favorably. The presented framework is suitable for
solving the correspondence problem for widely separated
views. In the future, we will try to investigate the influence
of sampling strategies on the performance. In our work the
distance between two descriptors was used as a criterion for
evaluation of quality of the matches. Such criterion how-
ever can only provide a lower bound on the appearance of
the local region associated with each feature and it can also
happen that two features which are close together in the de-
scriptor space are actually quite different. Ideally, residuals
from an affine alignment of local neighborhoods could be
used for assessments of the quality of the match, but this
strategy is computationally expensive if applied to a large
number of matches. The proposed approach can hence be
viewed as an extension of standard RANSAC, to deal with
multiple sets of matches, without incurring any additional
cost on the first matching stage.
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Figure 5: Left: The plant image pair is quite hard as pointed
out in [17]. Right: identified inliers using 3000 samples.

Figure 6: Left: matches of the facade of a building with
many repetitive structures. There were 221 matches and 38
of them were correct. Right: identified inliers using 1000
samples.

References
[1] Ben Tordoff and David W. Murray, “Guided sampling and

consensus for motion estimation,” in ECCV (1), 2002, pp.
82–98.

[2] F. Schaffalitzky and A. Zisserman, “Multi-view matching for
unordered image sets,” in ECCV’02, 2002, pp. 414–431.

[3] M. Mattar, A. Hanson, and E. Learned-Miller, “Sign clas-
sification using local and meta-features,” in CVAVI’05 (in
conjunction with CVPR), June 2005.

[4] D. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, 2004.

[5] C. Schmid and R. Mohr, “Local greyvalue invariants for im-
age retrieval,” Pattern Analysis and Machine Intelligence,
vol. 19, pp. 530–535, 1997.

[6] T. Tuytelaars and L. Van Gool., “Matching widely separated
views based on affine invariant regions,” IJCV, vol. 59, 2004.

[7] Jiri Matas, Ondrej Chum, M. Urban, and Tomas Pajdla, “Ro-
bust wide baseline stereo from maximally stable extremal re-
gions,” in BMVC’02, 2002, pp. 384–393.

Figure 7: Left: another building facade with many repetitive
structures. There were 168 matches and 44 of them were
correct. Right: identified inliers using 1000 samples.

[8] K. Mikolajczk and C. Schmid, “A performance evaluation of
local descriptors,” in CVPR 2003, 2003.

[9] Y. Ke and R. Sukthankar, “Pca-sift: A more distinctive rep-
resentation for local image descriptors,” in Proceedings of
IEEE Computer Vision and Pattern Recognition, 2004.

[10] E. Mortensen, H. Deng, and L. Shapiro, “A sift descriptor
with global context.,” in CVPR’05, June 2005.

[11] P. J. Huber, Robust Statistics, John Wiley and Sons, 1981.

[12] Peter J. Rousseeuw, “Least median of squares regression,”
Journal of the American Statistical Association., vol. 79, pp.
871–880, 1984.

[13] M. A. Fischler and R. C. Bolles, “Random sample consen-
sus: a paradigm for model fitting with applications to image
analysis and automated cartography,” in ECCV’96, 1996, pp.
683 – 695.

[14] Jiri Matas and Ondrej Chum, “Randomized ransac with
t(d,d) test,” in BMVC02, 2002, pp. 448–457.

[15] DR Myatt, PHS Torr, SJ Nasuto, and RJ Craddock, “Napsac:
High noise, high dimensional model parameterisation - its in
the bag,” in BMVC’02, 2002, pp. 458–467.

[16] P. Torr and A. Zisserman, “Mlesac: A new robust estimator
with application to estimating image geometry,” CVIU, vol.
78, pp. 138–156, 2000.

[17] O. Chum and J. Matas., “Matching with prosac: Progressive
sample consensus,” in CVPR’05, June 2005.

[18] R. I. Hartley and A. Zisserman, Multiple View Geometry
in Computer Vision, Cambridge University Press, ISBN:
0521540518, 2000.

7


