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Abstract

Man-made environments possess many regularities which can be efficiently
exploited for 3D dense reconstruction from multiple widely separated views. We
present an approach utilizing properties of piecewise planarity and restricted num-
ber of plane orientations to suppress the ambiguities causing failures of standard
dense stereo methods. We formulate the problem of the 3D reconstruction in MRF
framework built on an image presegmented into superpixels. Using this represen-
tation, we propose novel robust cost measures, which overcome many difficulties
of standard pixel-based formulations and handles favorably problematic scenarios
containing many repetitive structures and no or low textured regions. We demon-
strate our approach on several low textured, wide-baseline scenes demonstrating
superior performance compared to previously proposed methods.

1 Introduction
Previous approaches to acquisition of 3D dense models from multiple views differ
in the type of chosen geometric primitives, estimation algorithms as well as level of
human interaction. There exist several systems for completely automated recovery of
cameramotion and 3D structure of the scene, e.g. [17, 1]. In many instances the general
methods lack for robustness, demonstrated in Fig. 1 and are well conditioned only in re-
stricted scenarios. Alternatively, systems that have enjoyed success in limited domains
typically employ structural information and require some level of interaction [3, 13].

With the increased interest in modeling of urban environments as well as richness
of the various geometric configurations of basic building blocks, we want to extend
the class of 3D dense reconstruction techniques which can be used in automated or
semi-automated manner in cases where wide-baseline views are available. The typical
problems causing the failure of standard methods are lack of textured areas, presence
of repetitive textures, or large changes of image properties across views. In this paper
we cope with those problems by taking into account unique properties of the man-made
environments like piecewise planarities and dominant plane orientations. We propose
how to encode these properties into a 3D dense reconstruction pipeline and show that
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Figure 1: Comparison of the 3D models created by the ARC 3D webservice [17] employing
state-of-the-art techniques (two most left images) and by our proposed method. Right hand side
image from each group shows top view on the model. Notice more consistent and complete
model created by our method. Input images are shown in Fig. 3.

they yield more accurate and visually pleasing results, shown for instance in Fig. 1.
This work complements recent work in multi-view stereo which typically focuses on
often highly textured scenes [16].

The main contribution of this work is the choice of image representation by su-
perpixels, opposed to standard used single pixels, and novel energy term formulations
harvesting advantageous properties of such representation in man-made environments.
We employ the sweeping strategy encapsulated in a Markov Random Field (MRF)
framework similarly to [6, 5, 18], described in more detail in Sec. 2.2. We rely only on
the fact that the 3D patches projected into superpixels are planar which enables us to
reliably recover many planar structures. Such assumption allows more freedom than
the predefined geometric primitives like windows, doors etc., sometimes used in 3D
reconstruction pipelines [20]. Our proposed superpixel based formulation is beneficial
for the man-made environments in many aspects:

1. It solves the ambiguities present in standard dense stereo methods at places with
no or low texture. Those places are merged in superpixels and are treated as
larger entities implicitly restricting their possible 3D positions.

2. It is more robust to a camera misalignment enabling us to handle favorably wide-
baseline settings with illumination or camera exposure changes across views.
Single pixel formulations usually reliably work on dense narrow-baseline se-
quences only.

3. More robust photoconsistencymeasures can be designed over superpixels cover-
ing larger areas compared to standard small square windows centered at pixels.

4. Significant reduction of computational complexity can be achieved as the num-
ber of nodes in the graph built on superpixels is much smaller, by a factor of
1000, compared to graphs built on all image pixels.

The superpixels are widely used in image segmentation methods usually followed by a
recognition stage. It has recently been shown in [15] how the superpixels can be utilized
in connection to the 3D stereo reconstruction using single image 3D reconstructions
based on pre-learned priors from laser scanners.

The structure of the paper is the following. In Sec. 2 we first formulate the prob-
lem being solved here, second we compare previous and our suggested solution, and
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Figure 2: Left: Superpixels being swept detected by [4] on a reference image from the BUILD-
ING dataset. Right: The sweeping concept discussed in the paper.

in Sec. 3 we explain our proposed algorithm into detail. Experiments in Sec. 4 show
some results supporting the feasibility of the method.

2 Multi-view superpixel stereo
Let us assume a rigid scene of man-made environment observed by widely separated
calibrated cameras with known camera projection matrices and a presegmented refer-
ence image into superpixels. The number of cameras is arbitrary but more than two
and the input images are not required to be rectified. As an output we want to assign a
normal and depth in 3D to each superpixel.

Setup: The camera projection matrices are assumed to be of the form Pk =
Kk[Rk tk], where Kk stands for the camera intrinsic calibration matrix, and Rk, tk =
−Rk Ck for the rotation matrix and translation vector of the k-th camera with the center
Ck wrt a reference camera coordinate system [7].

Superpixels: The superpixels partition the image into locally homogeneous irreg-
ular patches, usefully containing pixels of same color or forming locally same texture.
An example of the superpixel partitioning can be seen in Fig. 2. Let us assume that the
superpixels come from projection of 3D planar patches. This is a reasonable assump-
tion for the man-made environments our method is designed for. Suitable superpixels
are those which respect boundaries and correspond to object boundaries or depth dis-
continuities in 3D [14, 4].

2.1 Problem statement
The planar assumption of the 3D patches states that a patch wewant to reconstruct from
its projection into a superpixel must lie at the intersection of the projective cone passing
the superpixel boundary and a plane containing the 3D patch, see Fig. 2. Denote such
a plane Π = [n! d]!, where n is the unit normal vector expressed in the reference
coordinate system and d is the distance along the normal of that plane to the origin.

All pixels xref inside a superpixel S in the reference image, if being a projection
of a planar patch, are mapped through a plane induced homography Hk ∈ #3×3 into
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the k-the camera view as xk $ Hk xref , where

Hk(Π, Pk, Kref ) = Kk

(

Rk − tk n!/d
)

K
−1
ref , (1)

see [7] for more detail. The only unknowns are the plane parameters n, d. As pointed
out in [6] one can estimate the unknown parameters by sweeping the plane Π by d
along different normals searching for such values n∗ and d∗ that map the superpixel S
via homography Hk at correct positions in other views.

The problem being considered here is to estimate parameters of all superpixel
planesΠ∗

s simultaneously from initial candidate hypotheses obtained by the sweeping.
The goal is to find a solution giving minimal photoconsistency error of the superpixels
and their projections in all views while respecting geometric properties of the super-
pixels and considering smooth changes of the depth and normals of the neighboring
superpixels. We want to find P∗ = {Π∗

s : s = 1 . . . S} as a Maximum Posterior Prob-
ability (MAP) assignment of aMRF, whose graph structure is induced by neighborhood
relationships between superpixels. More formally we seek such P∗ that

argmin
P

[

∑

s

Ephoto + λ1

∑

s

Egeom + λ2

∑

{s,s′}

Enorm + λ3

∑

{s,s′}

Edepth

]

, (2)

where E’s stand for energies, discussed in detail later, λ’s are their weights, {s, s′} are
neighboring superpixels, and P is a set of all possible planes for all S superpixels, i.e.
P = {Πs : s = 1 . . . S} andΠs = [n!

s ds]!.

2.2 Related work
There are several recent approaches how to cope with the NP-hard problem stated
in Eq. (2) and make it computationally tractable.

If the problem is formulated on pixels and photoconsistency term is computed over
small windows centered at the pixels [18] there is no need to estimate the normals. The
large number of plane distances (depths) is reduced by selecting those depths which
correspond to local minima along sweeping direction. The problem is then formulated
as the binary MRF solvable by the min-cut solver.

In [5] the problem is solved in an iterative framework. First, they match corners and
blob features and estimate their initial depths and normals from triangulation. Second,
they pass the depths and normals into a photoconsistency minimization framework
based on normalized cross correlation on patches over all views. They filter outliers
enforcing visibility consistency and repeat the same procedure a couple of times while
adding new neighbors to existing patches at each stage and regularizing over neighbors.

Operating still on pixels but increasing window size for photoconsistency term
computation is investigated in [6]. However, larger windows require that normals have
to be taken into account as well. Their algorithm is suited for the man-made envi-
ronments and therefore they consider only three dominant directions of normals. One
depth is chosen for each of three normals as a minimum of photoconsistency error
along the sweeping ray across all views resulting in a discrete MRF with 3 labels for
each pixel.
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Although the methods mentioned above operate on pixels, for computing the pho-
toconsistency term, they use windows to make a solution more robust to noise. The
windows centered at each pixel are assumed to be a projection of 3D planar patches.
This assumption is not valid for many pixels in the man-made environments. Espe-
cially for the pixels near boundary of two planes with different normals as the windows
start capturing pixels from another plane. Using larger windows yields more stable
results, however, there is higher chance that the planar assumption is violated. As a
remedy, superpixels naturally follow the boundaries and offer a natural way to avoid
those problematic cases, while still maintaining the robustness by operating on many
pixels. The photoconsistency term is computed only on pixels inside the superpixels
where it is more likely that the pixels belong to the same plane. Moreover, the meth-
ods mentioned above typically work in narrow-baseline settings with many views to
suppress sensitivity to camera pose inaccuracies.

3 Proposed solution
We restrict the space of directions of normals to dominant directions in the scene, sim-
ilarly to [6]. The set of depths for each superpixel is restricted to Nbest local minima
along the sweeping direction as opposed to [6] where only oneminimum is considered.
This is especially important in scenes with low texture and many repetitive patterns.
Compared to [6] we operate on more labels and reserve one extra “don’t know” label
to handle superpixels which are highly ambiguous. Next we describe a novel photo-
metric and geometric consistency criteria used in the energy terms and accommodate
the smoothness terms accommodating beneficial properties of the superpixels.

We formulate the problem in Eq. (2) as a discrete labeling problem on a graph with
fixed number of L labels per superpixel. The labels correspond to possible candidates
for depth and normal obtained in the sweeping stage. In the MRF graph structure the
superpixels s stand for graph vertices and pairwise connections {s, s′} are established
between all neighboring superpixels. The costs of labels ls and pairwise label edges
{ls, ls′} are set accordingly to energy terms defined in Sec. 3.2. More details about
solving Eq. (2) are given in Sec. 3.3.

In all presented results here, we obtain the dominant directions from detected van-
ishing points vi in the reference image and setting them toni = K

−1
refvi. In theManhat-

tan world there are three dominant mutually orthogonal directions and there are many
methods to detect them automatically [10, 8]. Alternatively, the normal directions can
be obtained from sparse cloud of reconstructed 3D points as proposed in [6]. However,
any directions can be added without further changes of the formulation.

3.1 Sweeping stage
The sweeping procedure is done for each superpixel Ss independently. Therefore we
drop the subscript s in next algorithm for better clarity unless necessary and explain the
procedure on one superpixel only. The whole process is repeated for all superpixels and
for all considered normals ni. As an output a matrix Ts is returned for each superpixel.
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1. Sweep a planeΠ = [n!
i d]! in 3D by changing d about∆d along ni from dmin to

dmax given as parameters. Repeat the steps 2-4 for all those d.

2. Obtain projections of a superpixel s in all views: Compute the homography matrix
from Eq. (1). Map the points from a rim of the considered superpixel s into the other
views, create polygon approximation of the boundary and select all interior points,
see first row images in Fig. 3.

3. Photometrically normalize each superpixel projection: Compute the chromacity
vector ck = [µR

k µG
k ]"

µR
k

+µG
k

+µB
k

, where µR
k , µG

k , and µB
k are mean colors of all pixels

inside the projection. Transform colors of those pixels such that their mean and
variance in each color channel become 0 and 1.

4. Evaluate cost of each superpixel projection: Compute histogram for each color
channel from the photometrically normalized pixels of the superpixel projection
using Parzen windows with linear kernel and stack them in one vector hk. We use
20 bins per color channel. Compute histogram difference1 χ2

k(hk,href ). Find the
set K of those views k where whole superpixel projection lies in the image and
χ2

k < Θ1, indicating non-occluded 3D patch for the k-th camera. Evaluate the
following cost measure

C(d) =
1

|K|

∑

k∈K

Ck(d) =
1

|K|

∑

k∈K

(

χ2
k + α‖ck − cref‖

2
)

, (3)

where the second term of Ck(d) encodes chromacity difference of the superpixel
and its k-th projection.

5. Find depth candidates: Search for Nbest minima of C(d) over d as possible can-
didates for depths with normal ni, see Fig. 3. Store the candidates represented by
[d i C(d)]! by adding them into the matrix Ts as new columns.

We investigated other possibilities of C(d) in Eq. (3), as i) sum of all Ck(d) [6]
and ii) as a function created by summing Gaussians put at local extrema of Ck(d) [18].
However, the mean of inliers in Eq. (3) provided the most stable results in the sense of
localizing possible depth candidates and handling occlusions. In all our experiments
we used Θ1 = 2 and α = 10.

The photometric normalization in step 3 is essential for handling scene illumina-
tion and camera exposure changes, which are often present in wide-baseline settings.
The idea of the photometric normalization was also favorably used in context of wide-
baseline matching in [11]. In case of the pixel based techniques the illumination invari-
ance is achieved only partially by using normalized cross correlation or by hardware
solution using directly a gain read out from the camera [6]. The superpixels allow to
handle this invariance more robustly. Third image in Fig. 3 shows that even though it
was shot with different, automatically adjusted exposure, the histogram still indicates
a region with the same properties.

1Chi-squared histogram distance is defined as χ
2(h, g) = 1

2

PNbins
j

(h(j)−g(j))2

h(j)+g(j) .
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Figure 3: Photoconsistency measure. First row: Input images from the BUILDING dataset with
an investigated superpixel with its correct projections in all views and epipolar lines for a center
of gravity of that superpixel. Second row: Histograms in R, G, B color channels computed from
pixels of the shown superpixels. Third row: Cost measure Ck(d) for each view and one com-
posed cost measure C(d) from Eq. (3) shown in bold black for correct and wrong normal (corre-
sponding to perpendicular walls). All local minima are plotted as small bullets whileNbest = 3
minima are enlarged. Red, Green, Blue colors correspond to fourth, third, and second view
respectively. Notice more jagged graph and higher minima for the wrong normal.

3.2 Energy terms
Photoconsistency term. This term penalizes appearance inconsistencies of the su-
perpixels across all views and is set as following

Ephoto(s, ls) = T
s
(3,ls)

, (4)

where ls is an assigned label for a superpixel s and the number Ts
(3,ls) is a 3rd row and ls

column in the matrix Ts, built in Sec. 3.1, corresponding to the photometric cost C(d)
of a depth candidate for a particular superpixel s.

Geometric term. We employ the assumption that in man-made environments su-
perpixel boundaries are usually aligned with the vanishing directions. The geometric
consistency of a superpixel with a particular plane normal is expressed via a devia-
tion of gradient orientation of the pixels along the boundary of the superpixel to two
vanishing points corresponding to that plane.

In all our experiments we employ 5-component gradient mixture model for the
Manhattan world described in [2]. For each image pixel, the model provides the proba-
bility of the pixel lying on an edge, probability to pointing to each of the three vanishing
points, see Fig. 4, and the probability of being noise. We take into account only those
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Figure 4: Gradient mixture model [2]. From left: three gradient probability images of being
aligned to each of three vanishing points a color-coded membership image of each pixel to one
of three vanishing points (red, green, blue), not to be consistent with any (cyan), and to be noise
(black).

pixels having the probability of being on an edge higher than being noise. For each of
those points a maximum over last 4 probabilities is chosen as a membership of the point
to either being consistent with one of the 3 vanishing points or not to be consistent with
any, see the most right image in Fig. 4. Then, for a particular superpixel s, we compute
a normalized histogram gs(y) with four bins y = {1, 2, 3, 4} from memberships of all
pixels lying along the superpixel boundary.

A probability ps(i) of the superpixel s to be compatible with a plane with the nor-
mal ni is captured by ps(i) =

∑3
j=1
j '=i

gs(j) if i = {1, 2, 3} and ps(i) = gs(4) other-

wise. The geometric term is then set as follows

Egeom(s, ls) = 1 − ps(T
s
(2,ls)

), (5)

where Ts
(2,ls)

indicates which normal is being considered. The term converges to 0
for rectilinear shaped superpixels with boundaries aligned with two vanishing points
perpendicular to a considered normal. In a non-Manhattanworld with more than 3 non-
orthogonal dominant directions in scene, a method with more components handling
more vanishing points can be formulated analogously.

Normal term. The normal term is one of the smoothness terms operating on su-
perpixel pairs. This term penalizes the changes of normal directions of neighboring
superpixels s and s′, and is defined as

Enorm(s, s′, ls, ls′) = δ
(

T
s
(1,ls)

&= T
s′

(1,ls′)

)

, (6)

where δ(.) is 1 when argument is true and 0 otherwise.

Depth term. This smoothness term penalizes the changes in 3D depth of points of
the common boundary of two neighboring superpixels. Denote x ∈ Ss ∩ Ss′ the
points on the boundary and X(x,n, d) = d K

−1
refx/

(

x!
K
−!
ref n

)

to be a reconstructed
inhomogeneous 3D point as an intersection of a sweeping plane and the projective ray
K
−1
refx. Then, the smoothness term

Edepth(s, s′, ls, ls′) = min
(

med
x∈Ss∩Ss′

‖X(x,ns, ds) − X(x,ns′ , ds′)‖

‖X(x,ns, ds)‖
, Θ2

)

, (7)
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is defined as median of the relative error, where ns = nT
s
(2,ls)

, ds = T
s
(1,ls)

is the con-
sidered planar hypothesis and analogously for ns′ and ds′ . The parameter Θ2 = 0.5
controls saturation of the measure to avoid strong penalization of true depth disconti-
nuities in the surface.

3.3 MAP solution of MRF
Given a discrete set of planar hypotheses for each superpixel obtained in the sweeping
stage, stored as vectors in the matrices Ts, the overall 3D reconstruction can then be
formulated as a discrete labeling problemwhere labels ls correspond to columns in ma-
trices Ts. In particular, given L labels corresponding to number of considered normals
× Nbest +1 (we reserve one label for the “don’t know” label), we seek a set of planes
P , which minimizes the energy in Eq. (2). The symbol P in Eq. (2) stands then for the
S dimensional vector l which assigns each superpixel s one label ls representing the
best planar hypothesis for that superpixel. The photoconsistency term for the ”don’t
know” labels are set as a constant set to mean Ts

(3,:) over all s and the geometric term
is set to 1. The pairwise edges with those labels have a fixed uniform prior.

Recently, very efficient and fast algorithms for solving this type of labeling problem
through linear programming relaxation and its Lagrangian dual have been reviewed
in [9, 19]. Although finding a global optimum of Eq. (2) is not guaranteed, as the
problem is NP-hard, it has been shown that often the optimal solution or one very close
to it can be reliably achieved.

3.4 Second iteration utilizing plane priors
After the first run of the labeling algorithm we obtain one depth and normal per su-
perpixel. We propose to re-compute the graph weights on edges utilizing the current
estimate and re-run the algorithm. The reason is that the photoconsistency measure
in Eq. (3) can miss some correct depths in the first run.

We utilize prior plane probabilities p(Πs) set as normalized histograms computed
from estimated depths of all pixels for each normal separately, see middle column
in Fig. 5. In [6] the plane priors are directly computed from triangulated point corre-
spondences which are not considered to be available here. It has been shown there that
by incorporating the plane prior p(Πs) in the Bayesian formulation, assuming the like-
lihood of the form p(C(d) |Πs) = e−

C(d)

2σ2 , and by minimizing negative log-likelihood
log

(

p(C(d) |Πs) p(Πs)
)

one ends up with new cost function

C2(d) = C(d) − 2σ2 log p(Πs). (8)

We use this cost function as a replacement for the cost function in Eq. (3) in the sweep-
ing algorithm in Sec. 3.1. The second iteration stage with σ = 0.1 in Eq. (8) contributes
to smoother surfaces and help to solve for inconsistencies in the depth estimates re-
mained after the first step, as shown in Fig. 5.

9



5 6 7 8 9 10

p
(n

1
,
d
)

5 6 7 8 9 10

p
(n

2
,
d
)

Figure 5: Two stage estimation process. First column: Result after the first stage. The top
image shows estimated directions of normals (pixels assigned ton1 have saturated blue, n2 green
channel), the bottom image shows estimated depth encoded in color range. Black color stands
for the “don’t know” label. Second column: Histograms from the estimated depths representing
p(Π) = p(n, d) used as priors for the next stage. Notice two dominant planes in each normal
direction. Third column: The smoother and consistent result after the second refinement stage.
Sky is manually masked out.

4 Experiments
The presented method is demonstrated on several scenes of man-made environments.
Videos of 3D reconstructions of all considered sequences can be seen online2.

The first BUILDING dataset, taken by us, shown in Fig. 3, consists of 4 wide-
baseline images containing repetitive texture and large illumination changes. Camera
poses were obtained by [17]. In this experiment only two normals are used since the
ground plane is not visible in the reference image. As it can be seen in Fig. 1 our pro-
posed method provides superior result compared to the standard method while using
same camera poses. The reconstructed building has large number of planar faces at
different depths.

The second experiment was performed on 6 images selected from the first half of
the BEGIJNHOF sequence with 46 images in total, provided with courtesy of Gallup
et al. [6]. The reason we did not employ all the images in the sequence is that we
want to demonstrate the method does not require to have a dense sequence. Here and
in all other presented experiments we utilize provided camera poses encapsulated in
the datasets. This scene is well textured and often used to demonstrate performance of
dense stereo algorithms. As can be seen in Fig. 6 our result shows less artifacts than
presented in [6] where all images were used.

In the third experiment, we took 6 out of 11 images from the OXFORD CORRIDOR
sequence [12]. This scene is extremely difficult for standard dense stereo techniques
because the scene contains mostly no-textured surfaces and the images are in gray-scale
and in low quality. Despite these problems our method performs very well as shown
in Fig. 6.

In the fourth experiment, we use all 5 images from the WADHAM COLLEGE se-
2http://ai.stanford.edu/∼micusik/research.html
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Figure 6: Results. First row: The BEGIJNHOF dataset. First two images show normals assigned
to pixels by our method and the method by [6]. Notice smoother result by our method. Next two
images depict views on 3D reconstruction. Second row: The assigned normals and views on 3D
reconstructions from the OXFORD CORRIDOR and WADHAMM COLLEGE datasets. Best viewed
in color.

quence [12]. We show here how the method behaves on surfaces whose normals are
not considered in the sweeping stage. Roofs are those examples and as it can be seen
in Fig. 6 they are approximated by closest walls while the rest is correctly reconstructed.
The frontal view of one of the buildings in the reconstructed 3D model demonstrates
correctly estimated planes and shows also a correctly estimated chimney in the corner
of the image.

In all our experiments we use the superpixel method based on the Minimum Span-
ning Tree [4], taking less than 1sec per image, as this method provides more suitable
output for our purposes compared to [14]. The energy weights are set to λ1 = 1,
λ2 = 0.05, λ3 = 0.1. The performance can be tuned with those parameters, however,
even the default setting provides reasonable good performance. The depth sweeping
range, i.e. numbers dmin, dmax,∆d, were set manually for each sequence. This could
be possibly avoided by utilizing reconstructed 3D points used for camera motion esti-
mation.

We do not perform a comparison with the Middlebury evaluation database [16]
since our method tackles conceptually different scenarios then those present in the
benchmark dataset. The focus of the methods is on exploiting constraints of man-made
environments and overcoming difficulties of wide-baseline settings.

5 Conclusions
We have presented amethod for multi-view 3D dense reconstruction fromwide-baseline
images of man-made environments. This is a problematic scenario for standard dense
stereo methods which often suffers from many artifacts in the final 3D reconstructions.
We have shown a natural way to cope favorable with these scenarios by choosing su-
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perpixel representation and designing new photometric and geometric cost terms inte-
grated in the MRF framework.
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