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Abstract

The core of the traditional RANSAC algorithm and
its more recent efficient counterparts is the hypothe-
sis evaluation stage, with the focus on finding the best,
outlier free hypothesis. Motivated by a non-parametric
ensemble techniques, we demonstrate that it proves ad-
vantageous to use the entire set of hypotheses gener-
ated in the sampling stage. We show that by study-
ing the residual distribution of each data point with re-
spect to the entire set of hypotheses, the problem of in-
lier/outlier identification can be formulated as a clas-
sification problem. We present extensive simulations
of the approach, which in the presence of a large per-
centage (> 50%) of outliers, provides a repeatable and,
an order of magnitude more efficient method compared
to the currently existing techniques. Results on wide-
baseline matching and fundamental matrix estimation
are presented.

1. Introduction

The basic RANSAC algorithm introduced by Fis-
chler and Bolles [3] is one of the most frequently used
techniques for robust estimation problems in computer
vision. The essence of the RANSAC algorithm is the
generation of multiple hypotheses by means of sam-
pling. Given a predetermined number of samples M ,
hypothesis model parameters are estimated for each
sample, followed by finding the support for each hy-
pothesis. To the best of our knowledge, the existing
works following the standard RANSAC scheme focus
on improving either the efficiency [5, 6] or the accu-
racy and the reliability of the hypothesis evaluation
stage [9, 8, 10]. Additional works dealing with the is-
sues of model selection and handling of the dominant
plane are also valuable extensions useful, in the context
of motion estimation problems [1]. We will briefly re-
view the some of the representative works in these cat-
egories and refer the reader to the references therein.

The standard RANSAC uses the number of inliers as
the main means of scoring the generated hypothesis.
Consequently, if the threshold T , on the residual er-
rors, which is used for classifying the data points as
inliers and outliers is not set appropriately, the final
model estimate will be poor. To overcome the draw-
backs of this scoring strategy, the MLESAC approach
introduced by [9] proposed to evaluate the hypotheses
by their maximum likelihood. For inliers the Gaussian
model has been adopted and outliers were assumed to
be distributed uniformly around 0, with the interval
proportional to the size of the search window used in
tracking. While this improved the scoring of individ-
ual hypotheses, the main idea behind the evaluation
scheme was the same. The MLESAC idea was ex-
tended further to exploit the matching score to assess
the probability that a feature is valid correspondence
and to use the score to guide the matching process [8].
To deal with the problem of threshold selection the
authors in [10] proposed an automatic scale selection
method for estimation of the scale of inlier noise by an-
alyzing the distribution of residuals of each hypothesis.
The inlier scale was estimated using an iterative mean
shift algorithm for locating the modes in the residual
distribution. Although the approach was capable of
handling a large percentage of outliers (≈ 85% ) on
simple line fitting examples, the efficiency related to
the required number of samples and additional over-
head caused by the iterative scale estimation scheme
has not been addressed.
Another class of improvements to the traditional
RANSAC scheme was focused on the improvements
of the efficiency of the hypothesis evaluation scheme.
In [5] authors introduced a pre-evaluation Td,d test,
which enabled them to evaluate only a fraction of the
data points and hence gain additional savings. This
scheme, however, did not affect favorably the number
of required hypothesis samples and still relied on the
presence of an outlier free hypothesis. The real-time
constraints led to the development of the preemptive
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RANSAC scheme proposed in [6], where the preemp-
tive score was used to sequentially remove bad hypothe-
ses until only the best one remained or the time budget
ran out. The scheme was tested on synthetic data with
20% outliers and real video sequences. The fractions of
outliers were relatively small due to the fact that the
correspondences were obtained by tracking techniques.

Presented work is motivated by difficult wide-
baseline matching/correspondence problems with a
large number of outliers and the need for efficient and
reliable robust estimation methods. Instead of rely-
ing on the existence of an outlier free hypothesis, we
demonstrate that the inliers can be identified directly
by characterizing the distribution of the residuals of
each data point with respect to all hypotheses. The
presented method, similarly to RANSAC, relies on the
generation of a number of hypotheses by sampling. We
exploit the entire ensemble of hypotheses and show that
the distributions of residuals of inliers and outliers are
qualitatively different and can be used for reliable clas-
sification of data points as inliers and outliers. Due to
the fact that the presented method does not rely on
the presence of an outlier free hypothesis, the number
of required samples for high outlier ratios is of an order
of magnitude less than the traditional RANSAC ap-
proach. In our earlier recent work [11] we introduced
the main idea behind the proposed inlier estimation
scheme, focusing on wide-baseline matching and fun-
damental matrix estimation and surface fitting from
the laser range data. This paper extends the previ-
ous work in several important ways. First, we demon-
strate the sensitivity of the method to different frac-
tions of outliers, different separation of outliers and
inliers given commonly encountered error distributions
and different number of samples. We also point out the
relationship of the procedure to commonly used non-
parametric re-sampling methods used in statistics such
as bootstrap, jackknife [2, 7]. At last, we demonstrate
the applicability of the method to robust motion es-
timation problems from wide-baseline correspondences
with high outlier ratios.

2. Motivation

In order to deal with the presence of outliers in re-
gression problems, the standard RANSAC algorithm
tackles this issue by means of sampling. Given a mini-
mal number of points k, needed to estimate the model
parameters, S subsets of samples of k points are first
drawn from the data and used to estimate an initial set
of S hypotheses. These hypotheses are subsequently
evaluated in the search for the best, outlier free hypoth-
esis. The points are then classified as inliers if their
residual, with respect to the best hypothesis, is below

ε outliers 30% 40% 50% 60% 70%
7-point 35 106 382 1827 13696
8-point 51 177 766 4570 45658

Table 1. The number of samples required to ensure 95%
confidence that at least one outlier free sample is obtained.

some threshold. Standard analysis assumes, that given
the minimal number of data points k needed to esti-
mate the model and the fraction of the outliers ε, we
can compute the probability ρ that given s samples at
least one of the samples is outlier free as:

ρ = 1− (1− (1− ε)k)s. (1)

In order to achieve a desired probability (confidence)
ρ of an outlier free hypothesis and provided that the
outliers fraction ε is known, we can compute from the
above equation the required number of samples:

S =
⌈

ln(1− ρ)
ln(1− (1− ε)k)

⌉
. (2)

Table 1 shows the number of samples needed for differ-
ent outlier ratios so as to assure 95% confidence of an
outlier free sample. When the data set contains 50% of
outliers and 8-point algorithm is used, 766 samples are
needed. The number of required samples goes to 1177
for 99% confidence. As pointed out by [8], the above
number of samples is wildly optimistic. In practice, the
number of samples required to reach a good hypothe-
sis is of an order of magnitude more. The experiments
in [5] also validate this rule. The actual number of
samples needed for 99% confidence is in the order of
5000. When ε = 0.7, the number of required samples is
45658. Consequently, the number of hypotheses to be
evaluated will be on the order of 105. One reason for
this is that Equation 1 is only an approximation of the
true probability, which is valid when number of initial
matches n >> k. The exact analysis shows that if we
have n data points and m outliers the probability of
good sample is the number of good subsets

(
n−m

k

)
, di-

vided by the number of all possible subsets,
(
n
k

)
which

gives

p =
(n− k)(n− k − 1) . . . (n− k −m + 1)

n(n− 1) . . . (n−m + 1)
. (3)

For example, for 200 data points and ε = 0.3 with
k = 8, we get p = 0.054. The number of good solutions
g out of s possible samples is a random variable with
binomial distribution(

s

g

)
pg(1− p)s−g.



Figure 1. The cumulative distribution of Poisson approxi-
mation to binomial distribution for different samples sizes,
given N = 200 matches. (left) The outlier ratio ε = 0.3
yields a probability p = 0.0542 of a good hypothesis; (right)
the outlier ratio ε = 0.5, gives p = 0.0032.

If p < 0.1 and s is large, this can be approximated by
Poisson distribution

Pγ(g) =
γge−γ

g!
,

where γ = Sp is the expected number of successes over
S trials. Note that the estimates in Table 1 are quite
optimistic. Figure 1 (right) shows that with ε = 0.5 al-
most S = 1000 samples are needed to obtain the prob-
ability of an outlier free sample around 0.9. Similar re-
lationship is shown for ε = 0.3 and S = 100, 500, 1000
(left).

The earlier improvements of RANSAC for motion
estimation, which considered parametric noise mod-
els [8, 9], typically considered scenarios where corre-
spondences were attained by means of feature tracking
in the video sequence. In such settings, the percent-
age of the outliers rarely exceeded 30%. Outliers were
typically caused by occlusions or a drift accumulated
during tracking and the range of errors was related to
the size of the search window in tracking, which was
around 5-10 pixels. Our work is motivated by recent
advances in wide baseline matching and motion esti-
mation from widely separated views and is most ad-
vantageous in this context. Here the number of poten-
tial correspondences is usually higher (on the order of
102-103), but in certain environments the percentage
of outliers easily exceeds 50%. While the inlier errors
are related to the localization of individual keypoints
and are on the order of 1-2 pixels, the outlier errors are
usually much larger, making the two error distributions
well separated.

3. The proposed scheme

In the presented approach, instead of evaluating in-
dividual hypotheses generated in the sampling stage,

we evaluate the residuals of each data point with re-
spect to all hypotheses. We demonstrate that for inliers
this distribution has a strong peak close to the origin,
reflecting the fact that many inliers’ residuals are small,
while for outliers the distribution of residuals is more
spread out. This property of residual distributions can
be characterized by higher order statistics and enables
us to formulate the problem of inlier/outlier identifi-
cation as a classification problem. The presented ap-
proach relies on the properties of the hypothesis space
populated by hypotheses generated by sampling and
uses the entire ensemble of hypotheses to determine
whether the point is an inlier or an outlier. Since the
entire set of hypotheses is exploited, the method does
not rely on a presence of an outlier free hypothesis. In
the situations with a large fraction of outliers, the re-
quired number of samples is of an order of magnitude
less then previously proposed methods. In addition to
its efficiency, the presented approach does not require
prior knowledge of the outliers percentage nor a thresh-
old T for determining inliers’ support of the hypothesis.

3.1. Inlier identification procedure

Given a set of correspondences {xi,x′i}C
i=1 between

two views, our goal is to estimate the fundamental ma-
trix F . Similarly, as in the standard RANSAC scheme,
we first use sampling to generate a set of hypotheses,
(i.e. fundamental matrices). This is achieved by sam-
pling the set of correspondences by selecting 8-point
samples and estimating F using an 8-point algorithm
with normalization. For each data point (e.g. cor-
respondence), we study the distribution of the errors
with respect to all hypotheses. For a hypothesis Fj ,
instead of considering residual error (ri

j)
2 = (xT

i Fjx′i)
2

we use the so-called Sampson distance of the point to
the epipolar line and is defined as:

(ri
j)

2 =
(xT

i Fjx′i)
2

(Fjxi)21 + (Fjxi)22 + (FT
j x′i)

2
1 + (F t

j x
′
i)

2
2

(4)

where (Fx)2k represents the square of the k -th entry
of the vector Fx. Figure 2(a) and Figure 2(b) shows
typical error distributions with respect to all gener-
ated hypotheses for a data containing 30% outliers.
The data was generated using a total of 200 3D points
in general position with depth variation of 1000 pro-
jected into two views related by general motion. The
inliers were corrupted by a zero mean Gaussian noise
and standard deviation of 2 pixels, while the inliers
were assumed to be uniformly distributed in the inter-
val [−50,−20] ∪ [20, 50] pixels. In this case, the error
distributions of inliers and outliers are well separated.
The residuals are computed with respect to 500 hy-
potheses generated in the sampling stage.



(a) (b)

Figure 2. Histogram of residuals for a true inlier (a) and a
true outlier (b) with the outlier ratio, ε = 0.3 and number
of samples S = 500.

Note that the residual histograms of the inliers and
outliers are very different. The inliers typically have
a strong peak close to 0, while the outliers’ distribu-
tion is more wide-spread. We will use this observation
for classification of the points to inliers and outliers
based on nth order statistics of their residual distribu-
tion. Our approach exploits the fact that the residuals
of the inliers are noticeably lower, even with respect
to hypotheses which contain outliers. Hence, the hy-
potheses which contain some small number of outliers,
contribute to the peak of the inliers’ residual histogram.
Figure 3 demonstrates this observation on a simple line
fitting example. In this case the line fit was obtained
using all the inliers and two outliers.

(a) (b)
Figure 3. (a) Line fitting example: the dashed line is the
obtained estimate; (b) the residuals of all data points with
respect to the line model with two outliers. Note that al-
though the estimated line contains two outliers, the resid-
uals of inliers (first 10 points) are notably smaller then the
residuals of the outliers (last 10 points).

3.2. Distribution statistics

In order to characterize the qualitative differences
between the distributions of inliers and outliers de-
picted in Figure 2, we compute the skewness and kurto-
sis of the two kinds of residual histograms. Skewness γ
measures the asymmetry of the data around the sample

mean µ

γ =
E(x− µ)3

σ3
. (5)

If the value of skewness is positive, the data are spread
out more to the right of the mean than to the left.
Kurtosis β captures the amount of peakedness of a dis-
tribution and is defined as

β =
E(x− µ)4

σ4
. (6)

For the two histograms shown in Figure 2, the kurto-
sis and skewness for the inlier are 24.4 and 4.6, while
for the outlier they are much smaller: 7.6 and 1.7, re-
spectively. These characteristics capture the fact that
the inlier’s histogram of residuals has a much stronger
peak than that of an outlier and can be used for further
classification. Figure 4 shows the plots of the values of
skewness and kurtosis for each data point in 2D for
outlier ratios 0.3 and 0.5. As we can see the kurtosis
and skewness are correlated. In our experiments, only
kurtosis is used for identifying the inliers. Inliers can
be easily separated, either by a k-means clustering al-
gorithm or simply by ranking the points in the order
of decreasing kurtosis and considering the top k to be
inliers. Notice that the true inliers have kurtosis with a
much larger variance than the outliers. Consequently,
some inliers can be missclassified as outliers after the
grouping. This, however, will not cause a problem for
the model estimation, because enough true inliers are
identified. Also, a small number of true outliers might
be included in the identified inliers set. The standard
RANSAC can be applied to this new inlier set. The
computational demands of this second stage are very
low since the outlier percentage is very small in this
case with no more than 10% outliers as our experi-
ments show.

(a) (b)

Figure 4. Kurtosis and skewness of all data points, ’o’ de-
notes inliers and ’x’ outliers with 500 samples. (a) The out-
lier ratio is 0.3 (b) the outlier ration is 0.5. Outlier errors
were uniformly distributed between [−50,−20] ∪ [20, 50];

Notice that in Figure 2 the outliers’ histogram of
residuals can also have a high count in the first bin



because some hypotheses are generated using the sam-
ples which contain the outlier itself. For this reason,
the 1st bin was set to 0 prior to computation of the
statistics. Considering that the size of the image plane
is 400 × 600, the error histogram has 150 bins repre-
senting the Sampson error ranging from 0 to 149 (large
enough to capture the detail of the error distribution).
We disregard errors greater than 149. In the above
experiments the number of samples used to generate
the hypotheses is set to be N = 500. We examine
this choice more closely in the following section. Algo-
rithm 1 summarizes the procedure for inlier identifica-
tion for the case of fundamental matrix estimation.

Algorithm 1 Inliers identifications procedure

1. Randomly select N 8-point samples and gener-
ate N fundamental matrix hypotheses {Fj}, j =
1, 2 . . . , N .

2. For each correspondence (data point), compute its
Sampson error rj

i with respect to each hypothesis.

3. For each correspondence, estimate its residual dis-
tribution by constructing histogram of N residuals
associated with it. The histogram is used to eval-
uate whether the correspondence is an inlier.

4. For the C histograms of residuals compute the
value of kurtosis βk to characterize each of them.
In this stage each correspondence is represented
by a point in the 1D kurtosis space.

5. Use a k-means clustering algorithm to cluster the
data into two groups, which are identified as inliers
and outliers, or simply rank the points by their
kurtosis value.

Note that the proposed scheme does not need a pre-
defined threshold for inlier identification, nor does it
require prior knowledge of the outlier ratio. In the next
section we will demonstrate, in simulation, the sensi-
tivity of the method with respect to different choices
of parameters.

4. Performance and sensitivity

Number of samples. Since the method uses the en-
tire ensamble of hypotheses, it is difficult to establish
a bound on the number of samples related to a de-
sired confidence as done in standard RANSAC. We
study this relationship in simulation by measuring the
separability of the inliers and outliers as a function
of the number of samples. The Jeffries-Matusita dis-
tance measure of separability is used to assess how well

two classes may be separated. Assuming that the two
classes can be represented by normal distributions with
N(µi, Ci) and N(µj , Cj) the Jeffries-Matusita distance
is computed as

JMij =
√

2(1− e−α) (7)

where

α =
1
8
(µi−µj)T

(
2

Ci + Cj

)
(µi−µj)+

1
2
ln

(
1
2 |Ci + Cj |√
|Ci||Cj |

)

The Jeffries-Matusita distance has an upper bound of
1.414(

√
2), and a lower bound of 0. When the cal-

culated distance has a value of the upper bound, the
signatures can be said to be totally separable, while
the signatures are inseparable when the calculated dis-
tance is 0. We experimented to see how the number
of samples affects the performance characterized using
JM distance. If outliers and inliers are totally separa-
ble, their JM distance would be 1.414. On the other
hand, if they are tangled together and inseparable, the
distance would be 0. For a given outlier ratio, we ran
100 trials of the proposed method and estimated the
two clusters based on their kurtosis measure. Mean and
standard deviation for both outliers and inliers were
obtained in each run. Then we used the average of
those means and standard deviations to compute JM
distance for the particular number of samples. Figure 5
shows the simulation for data with different outlier ra-
tios. As shown, the separability improves when the
number of samples increases. However, after 500 sam-
ples, the separability wouldn’t improve much as the
number of samples increases.

In the case of lower outlier ratios smaller number of
samples is sufficient. Figure 6 shows the separation of
inliers and outliers using 200 samples. Lowering the
number of samples further will affect the quality of the
skewness and kurtosis estimates. Since we would like to
have a method which works for a range of outlier ratios
we choose the number of samples which has been shown
in simulation (Figure 5) to provide a good separation
of outliers and inliers for high outlier ratios.

Separation of error distributions. Since the
method relies on the different properties of residuals
of outliers and inliers, it is affected by the assump-
tions about the separation of the two error distribu-
tions. Figure 7 shows the simulation for the case when
the error distribution of outliers is uniform on the in-
terval [−20,−3]∪[3, 20], as well as uniform on the inter-
val [−50, 50]. The inliers are distributed normally with
N(0, 2). Since the error ranges are less separated, some
of the data points can be missclassified compared to



Figure 5. The JM distance changes with the number of sam-
ples. Note that it increases little after 500 samples.

(a) (b)

Figure 6. Kurtosis and skewness of all data points, ’o’ de-
notes inliers and ’x’ outliers computed based on 200 sam-
ples. (a) The outlier ratio is 0.3 and (b) the outlier ratio
is 0.5. Outlier errors were uniformly distributed between
[−50,−20] ∪ [20, 50].

(a) (b)

Figure 7. Kurtosis and skewness of all data points, ’o’ de-
notes inliers and ’x’ outliers. (a) The outlier ratio is 0.3,
with outlier errors uniformly distributed in [−20,−3] ∪
[3, 20] and (b) the outlier ratio is 0.5 and the outlier er-
rors uniformly distributed in [−50, 50]. 500 samples were
used in both experiments.

examples in Figure 4. This however is consistent with
the observation that the missclasified outliers with low
errors are in fact consistent with the epipolar geome-
try. Hence, the proposed method can still effectively
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Figure 8. Mean and 95% confidence interval of inliers’ kur-
tosis are shown in red, mean and 95% confidence interval
of outliers’ kurtosis are shown in blue.

identify a majority of the outliers and can be used as
a preprocessing step to the standard RANSAC, which
can then be employed with a much lower number of
samples. Changing the variance of outliers does not
affect the separation capability.

Outlier ratio. Once the outlier percentage exceeds
65%, the proposed method is not as effective. This
constitutes the limiting case of our method. Increasing
the number of samples would not help, since with the
increasing number of samples the number of hypothe-
ses with a significant fraction of outliers would also
increase. Figure 8 depicts the separation of inliers and
outliers in the skewness/kurtosis space as the outlier
ratio increases. he settings for the experiment were
the same as in Figure 2. We can see that kurtosis value
of outliers is always small because they have no signif-
icant peaks. The kurtosis of inliers is much larger at
first, meaning their error distributions do have strong
peaks. It then decreases as more outliers are added be-
cause outliers would disperse the peaks. When the frac-
tion of outliers ε is less than 0.6, the mean of kurtosis
computed based on inliers is above the 95% confidence
interval of that of outliers. Therefore, the kurtosis of
an error histogram associated with inliers and outliers
are statistically different, and an inlier group obtained
through k-means clustering is very unlikely to contain
true outliers. When the outlier percentage increases
further, but no more than 0.7, the mean of inliers’ kur-
tosis is close to the upper bound of that of outliers’.
In this case, the inlier cluster obtained from k-means
may contain some true outliers, but the percentage will
be much lower than in the original data. As we men-
tioned before, an additional step of standard RANSAC
on this inlier group can obtain a model parameters with



a small number of samples. When the outlier percent-
age goes further to 0.75, inliers and outliers become
indistinguishable. Figure 9 shows the effect of increas-
ing the number of samples for the outlier ratio 0.7.
At this high outlier ratio, the probability of obtaining
a sample with a small number of inliers is very low.
The increase in the number of samples which contain
one, two or three outliers (and contribute to the kur-
totic shape of inliers’ distribution) is almost negligable.
In the majority of the samples more than half of the
points are outliers. The fact that only the hypothesis

(a) (b)

Figure 9. Kurtosis and skewness of all data points, ’o’
denotes inliers and ’x’ outliers. The outlier ratio is 0.7
and the outlier errors were uniformly distributed between
[−50,−20] ∪ [20, 50]. (a) 5000 samples; (b) histogram of
hypotheses with different outlier numbers. Increasing the
number of samples does not improve the separability of in-
liers and outliers.

with one, two and three outliers significantly contribute
to the kurtotic behavior of inliers’ residual distribution
is demonstrated in Figure 10. The plot 10(a) shows
different distributions of the mean inlier residuals, for
different number of outliers present in each sample and
(b) their corresponding kurtosis. The number of out-
liers in each sample was fixed for each distribution.

(a) (b)

Figure 10. (a) Distribution of mean residuals of inlier points
as a function of number of outliers in the generated hy-
potheses; (b) kurtosis values of the same distributions. Note
that for hypotheses with more then 3 outliers the curve flat-
tens out.

Asymptotic running time analysis. The steps 3,
4, and 5 of Algorithm 1 require extra computation
compared to standard RANSAC. Given N samples
and C correspondences, constructing the histograms
takes O(NC) and computing the value of kurtosis takes
O(NC) multiplications; the classification in 1-D kur-
tosis space is very efficient. Overall computation time
is less than the second hypothesis evaluation stage of
standard RANSAC which requires O(NC) matrix mul-
tiplication. For the scenarios examined by simulations
and in real experiments, the number of samples used
was 500 with outlier ratios greater then 0.6. This is
an improvement of an order of magnitude compared to
the standard RANSAC method.

5. Experiments

The proposed scheme was tested with real corre-
spondence sets obtained from wide baseline matching.
The putative correspondences were obtained based on
the matching of SIFT keypoints [4]. We tested the
method in the domain of wide baseline matching be-
tween two views of urban scenes and/or buildings.
In addition to a large change of viewpoint between
the views, these scenes contain many repetitive struc-
tures, making the problem of finding correspondences
by means of matching local feature descriptors highly
ambiguous. Our focus here is on the inlier identifica-
tion capability of the proposed scheme. In this stage,
the identified inliers are not refined with additional
RANSAC round, so they might still contain few true
outliers for severely contaminated data sets. Two ex-
amples are shown in Figures 12 and 11. The identified
inlier sets include most of the true inliers and very few
outliers. Since we do not rely, per se, on the presence of
an outlier free hypothesis, our method for inlier identi-
fication is not affected by the dominant plane problem.
Even in cases when the linear algorithm for fundamen-
tal matrix estimation is poorly conditioned, due to the
fact that the selected subset of points comes from the
plane, all the inliers will still have small residuals with
respect to the closest fundamental matrix estimate. In
this case, however, once a subset of inliers is identi-
fied a proper model selection has to be carried out, but
now with a substantially lower number of outliers. We
also carried out some preliminary experiments, which
indicate that the presented method is applicable in the
context of general systems of linear equations contam-
inated by outliers.

6. Conclusion and future work

When the percentage of outliers is low, our approach
can identify inliers and outliers directly almost without



(a) (b)

Figure 11. Leuven image pair with identified inliers.

(a) identified inliers. (b) identified outliers.

Figure 12. 383 correspondences are initiated with approx-
imately 60% outliers. 93 inliers are identified with only
1 false positive. Note the first left door in the left image
corresponds to second left door in the right image.

mistake. The low percentage of outliers can also be
handled by RANSAC without excessive computational
overhead. We emphasize that our approach is most
advantageous on correspondences sets with significant
portion of outliers of more than 40% as often encoun-
tered in wide baseline matching. In this paper, we
proposed a new inlier identification scheme for robust
motion estimation, which can efficiently handle data
sets containing significant levels of outliers. Inliers can
be identified directly without relying on the existence
of an outilier free hypothesis, thus avoiding the need for
a large number of samples, which is required for stan-
dard RANSAC algorithm. In addition to the efficiency
of the proposed approach, we have also eliminated the

need for sensitive threshold selection for outlier identi-
fication as well as the need for prior knowledge about
the percentage of outliers. The proposed scheme has
been tested extensively with both synthetic and real
data. We are also in the process of carrying out more
extensive experiments and analysis in order to asses
the applicability of the presented method for other es-
timation problems.
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