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Abstract Future advancements in robotic navigation and mapping rest to a large
extent on robust, efficient and more advanced semantic understanding of the sur-
rounding environment. The existing semantic mapping approaches typically con-
sider small number of semantic categories, require complex inference or large num-
ber of training examples to achieve desirable performance. In the proposed work
we present an efficient approach for predicting locations of generic objects in urban
environments by means of semantic segmentation of a video into object and non-
object categories. We exploit widely available exemplars of non-object categories
(such as road, buildings, vegetation) and use geometric cues which are indicative of
the presence of object boundaries to gather the evidence about objects regardless of
their category. We formulate the object/non-object semantic segmentation problem
in the Conditional Random Field Framework, where the structure of the graph is
induced by a minimum spanning tree computed over a 3D point cloud, yielding an
efficient algorithm for an exact inference. The chosen 3D representation naturally
lends itself for on-line recursive belief updates with a simple soft data association
mechanism. We carry out extensive experiments on videos of urban environments
acquired by a moving vehicle and show quantitatively and qualitatively the benefits
of our proposal.

1 Introduction
In recent years the research trends in robotic mapping, navigation and localization
focused on developing methods for better understanding of the surrounding environ-
ment in order to facilitate more reliable lifelong navigation and mapping. The goal
of this work is to endow the models of urban environments with semantic infor-
mation, which would enable reasoning about presence of different semantic classes
(objects) in an on-line setting. We propose to tackle this problem by means of an on-
line recursive semantic segmentation of a video stream into object and non-object
(road, vegetation, buildings) categories.

The most common techniques for semantic segmentation of urban environments
focus on a small number of commonly encountered semantic classes (e.g. road, sky,
buildings, trees, cars). While the state of the art of the semantic parsing approaches
in outdoors settings achieve relatively high average accuracy of 85-90% on some
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Fig. 1 First row: Original image (left) with the reprojected 3D point cloud (right). Other rows:
Ground truth labeling (left) and MAP result from our approach (right).

datasets [29], it is largely due to the fact that majority of 2D or 3D regions belong
to non-object semantic categories. These categories such as buildings, roads, vege-
tation and sky often exhibit lower intra class variability, have strong location priors
and ample of training data available. With more detailed scrutiny, the existing ap-
proaches consider either very small number of object categories (e.g. cars, trees) or
exhibit poorer performance when number of object categories grows and the train-
ing examples are sparse [19]. The performance could be notably improved by using
a specialized sliding window based object detector pipelines [25] or explicit models
of higher order dependencies between individual regions captured by higher order
potentials in MRF (CRF) framework [14, 7]. These approaches however are not suit-
able for an on-line setting and typically require a large amount of training examples
and/or an expensive training and inference procedure.

In our approach instead of modeling complex spatial and label dependencies or
requiring large number of training examples for object categories, we propose an
intermediate semantic representation of urban scenes into a single generic object
category and non-object categories of road, building and vegetation. In order to
effectively gather evidence about generic objects regardless of their category, we
use informative 3D features indicative of occlusion boundaries and depth ordering
cues, which were found previously useful in research on perceptual grouping.

Contribution

The main contribution of the proposed work is the development of novel representa-
tion, features and associated efficient inference algorithm for the problem of seman-
tic labeling of outdoors urban environments into object and non-object categories.
Similarly to the existing approaches we formulate the semantic labeling problem in
the Conditional Random Field (CRF) framework, where the dependencies between
random variables are represented by a graph, induced by different partitions of an
image or a 3D point cloud. The distinguishing features of our approach are: a) the
use of a tree graph structure in the CRF setting which is induced by the 3D scene
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structure and allows exact and efficient inference amenable for real-time implemen-
tation; b) the use of simple and efficient features and geometric cues, providing
evidence about discontinuities and depth ordering; c) an explicit model of temporal
coherency enabling an on-line inference; d) a flexible model structure easily adopt-
able to a single or multi-frame settings, without a need for extra training. The seman-
tic output of our method produces detections and associated confidences about the
presence of isolated generic objects and semantic labels of non-object categories.
The output can be used effectively for priming specific object detectors and as a
starting point of additional reasoning about various attributes (e.g. static/dynamic,
movable, undergoing seasonal change etc).

In the next section, we provide an overview of the related work. In Section 3 we
describe the details of our approach. Section 4 describes the experiments on street
scene sequences and compares our approach with the state of the art methods. Fi-
nally, in Section 5 we present discussion and conclusions of the presented work and
discuss possible future directions.

2 Related Work
The presented work on semantic segmentation of images and 3D point clouds into
object and non-object categories is motivated by several previous approaches devel-
oped both in Computer Vision and Robotics communities. The existing approaches
vary in the number and types of semantic classes they consider, the sensing modal-
ity, features and inference algorithms.

The approaches developed in the context of robotics applications rely mostly on
3D measurements from laser range finder or dense depth reconstruction and have
been also explored in the context of analysis of urban scenes acquired by a moving
vehicle. In these methods the graph structure is typically induced by a partition-
ing of 3D point clouds. Authors in [5] consider 2D semantic mapping over street
laser/image data providing computationally intensive solution on a graph induced
by Delaunay triangulation. Both laser and image measurements are used in [21],
where efficient solution is provided considering only vehicles as object class. Dense
stereo reconstruction was used on CamVid urban sequences by [30] further improv-
ing the performance, but considering seven specific object classes.

In computer vision community the problem of simultaneous segmentation and
categorization of image regions was typically considered in a single view setting.
Non-parametric approaches of [24], and [6] treated the representations of both ob-
ject and no-object categories in the same manner and used both the SIFT Flow
dataset with 33 semantic labels and Label Me with 253 labels to evaluate the per-
formance of their approaches.

In addition to a single view setting several approaches explicitly modeled tempo-
ral relationships between the frames in the inference problem or exploited 3D struc-
ture obtained from visual reconstruction [29]. These strategies further improved
the labeling performance while still considering a small number of object cate-
gories, with objects being trees, cars, persons and recycle bins. Recently, Sengupta
at al. [23] have obtained 3D semantic models in urban scenes where the labeling
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of every single image was transferred to the 3D reconstruction by voting. However,
neither the 3D information nor the sequential nature was used for the inference itself.
Floros and Leibe [7] segment urban scenes using images and 3D in a CRFs setting
using high order potentials between 3D points with their reprojection in several im-
ages in the sequence. Their system is only applicable to static environments and is
not amenable for real-time implementation. In our case we directly formulate the
inference on a graph induced by 3D structure of the scene, which enables us to use
the odometry to guide a soft data association between consecutive frames. Our for-
mulation hence naturally fits the standard probabilistic recursive filtering approach
suitable for variety of perceptual tasks.

Additional ideas related to the problem of generic object detection can be found
in works which exploit different models of saliency, various perceptual grouping
cues and unsupervised object discovery. Alexe et. al. in [2] propose an approach for
generic object detection motivated by a notion of saliency; objects are salient regions
surrounded by background and delimited from it by strong contour edges. This ap-
proach only exploits the appearance cues, is applicable to a single view setting and
more suitable in the context of image based retrieval applications, where images of
scenes are well composed, containing little clutter. Our approach is motivated by
work of [3], which explicitly reasons about evidence of occlusions boundaries ex-
tracted from optical flow and relative depth ordering cues. Also related to our work
are several attempts to discover objects in urban scenes. In [26] authors propose a
completely unsupervised approach to semantic parsing of outdoors scenes based on
the idea of online clustering, demonstrating a capability of discovering categories of
car, vegetation, building and ground place in the absence of any labelled data. While
this approach is very effective for large objects, generalization to a large number of
categories and possibly small objects is be more difficult. Alternative approach for
parsing the environments into static parts and moving objects has been recently pro-
posed in [28]. The authors demonstrated successful detection of cars, pedestrians
and bicyclists in 3D laser scenes, using the independent motion cue. We view our
approach as complementary to the previously proposed techniques. The proposed
semantic segmentation of video into object and non-object categories yields a rep-
resentation that can be used effectively as priors for detection of more broader class
of categories (e.g. mailboxes, traffic/road signs, fire hydrants, moving objects).

3 The approach
3.1 Method
We formulate the semantic parsing in the framework of Conditional Random Fields
(CRFs) with a tree graph structure encoding the pairwise relationships. We assume
that an image and a 3D point cloud of the scene are available. Our approach starts
by over-segmenting the image using the efficient simple linear iterative clustering
(SLIC) algorithm [1]. Every superpixel in the image is interpreted as a cluster in the
3D point cloud for further computations. The 3D centroid of each cluster is used to
compute a minimum spanning tree over Euclidean distances, defining the edges for
the graphical model. The data and pairwise terms are determined using simple yet
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discriminative appearance and geometric cues for the classes that we are interested
in. The learning and the final inference process is carried out over the graph in the
CRFs framework. In the remainder of this section we detail the components of our
approach and explain the intuition behind them.

3.2 Framework: Conditional Random Fields
Conditional random fields are probabilistic undirected graphical models first de-
veloped by [16] for labelling sequence data. CRFs are a case of Markov Random
Fields, and thus satisfy the Markov properties. Instead of relying on Bayes’ rule to
estimate the distribution over hidden states x from observations z, CRFs directly
model p(x|z), the conditional distribution over the hidden variables given observa-
tions. Due to this structure, CRFs can handle arbitrary dependencies between the
observations. This makes them substantially more flexible when using attributes
that are too complex to model their probability distribution and the assumption of
independence, as in a naive Bayes setting, is too strong [12].

The nodes in a CRF are denoted x = 〈x1,x2, · · · ,xn〉, and the observations are
denoted z. In our framework the hidden states correspond to the m possible classes:
xi = {ground,ob jects,building,vegetation}.

A CRF factorizes the conditional distribution into a product of potentials. We
consider only the potentials for nodes φ(xi,z) (data-term) and edges ψ(xi,x j,z)
(pairwise-term). This choice is commonly referred as pairwise CRFs. The poten-
tials are functions that map variable configurations to non-negative numbers cap-
turing the agreement among the involved variables: the larger a potential value, the
more likely the configuration. Using the data and pairwise potentials, the conditional
distribution over hidden states is written as:

p(x|z) = 1
Z(z) ∏

i∈N
φ(xi,z,) ∏

i, j∈E
ψ(xi,x j,z) (1)

where Z(z) is the normalizing partition function, and 〈N ,E 〉 are the set of nodes
and edges on the graph. The computation of this function can be exponential in the
size of x. Hence, exact inference is possible for a limited class of CRF models only,
e.g. in tree-structured graphs. Potentials are described by log-linear combinations of
feature functions, f and g, i.e., the conditional distribution in Eq. 1 can be rewritten
as:

p(x|z) = 1
Z(z)

exp

(
w1 ∑

i∈N
f(xi,z)+w2 ∑

i, j∈E
gc(xi, j,z)+w3 ∑

i, j∈E
gm(xi, j,z)

)
(2)

where w = [w1,w2,w3] is a weight vector, which represents the importance of each
term. CRFs learn these weights discriminatively by maximizing the conditional like-
lihood of labeled training data. We will describe every term of Eq. 2 in detail in 3.4.
With this formulation we can obtain either the marginal distribution over the class
of each variable xi by solving Eq. 2, or the most likely classification of all the hid-
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Table 1 Local observations
Source Default Observation Dim. Comments

Image
LAB color 6 Mean and standard deviation
RGB color 6 Mean and standard deviation

ys 1 Vertical pixel location

3D

p̃s 3 [xs,abs(ys),zs]
0 (µ∆ds ,σ∆ds ) 2 if ds <

1
‖N‖ ∑ j∈N(d j) , ∆ds = ‖ds−d j∈N‖

0 1−mean(‖nsnN‖) 1 Neighbouring planarity
0 3σ3

σ1+σ2+σ3
1 Superpixel planarity

0 ‖ns · k̂‖ 1 Superpixel vertical orientation

den variables x. The latter can be formulated as the maximum a posteriori (MAP)
problem, seeking the assignment of x for which p(x|z) is maximal.

3.3 Minimum Spanning Tree over 3D distances
Instead of computing the graph at the pixel level, we over segment the image into
superpixels. The CRF graph structure is typically determined by the neighbourhood
relations between superpixels, often connecting unrelated semantic classes (e.g. a
person’s head with the sky in the background). We define the graph structure for
the CRF as a minimum spanning tree over the Euclidean distances between 3D
superpixel’s centroids in a scene. By definition, the minimum spanning tree connects
points that are close in the measurement space, highlighting intrinsic localities in
the scene, see Fig. 2(b). Given that our graph structure is a tree we use the belief
propagation algorithm [12] to infer the probability class of each node.

3.4 Feature Functions Description
Now we define the feature functions f(x,z) and g(x,z) in Eq. 2. Starting by the
data-term for each superpixel s that is computed as:

f(xs,z) =− logPs(xs|z) (3)

where the local prior Ps(xs|z) is the output of a k-nearest neighbours (k-NN) classi-
fier from a set of observations z. We compute Ps(xs|z) as proposed by [24] in Eq. 4.

Ps(xs = l j|z) =
1

∑
m
j=1

(
f (l j)

f (l j)

F(l j)

F(l j)

) f (l j)

f (l j)

F(l j)

F(l j)
(4)

where f (l j) (resp. f (l j)) is the number of neighbours to s with label l j (resp. not l j)
in the kd-tree. And F(l j) (resp. F(l j)) is the counting of all the observations in the
training data with label l j (resp. not l j). The observations z computed for every su-
perpixel s capturing the appearance cues obtained from the image (Image Features)
and the depth cues (3D Features) are summarized in Table 1 and described next.

Image Features: From the appearance of the superpixel we only use color cues and
its vertical location, as follows: the mean and standard deviation of each channel in
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the LAB and RGB color spaces for the superpixel, and the vertical pixel coordinate
for the superpixel’s centroid.

3D Features: For the 3D point cloud we use cues from the position and planarity, for
the superpixel itself and for the superpixel with respect to its neighbourhood. The
cues are: the modified 3D coordinate p̃ for the superpixel’s centroid with the abso-
lute value in its lateral coordinate, then we have depth, height and positive lateral
distance; the mean and standard deviation of the absolute difference between the
depth ds and the neighbourhood’s depths: ‖ds−d j∈N‖, but these are only computed
if ds <

1
‖N‖ ∑ j∈N(d j), with this condition we encode the in-front-of property; the su-

perpixel planarity encoded by the curvature of a superpixels’ point cloud [11] using
the SVD and sort the singular values such that σ1 > σ2 > σ3; the neighbourhood
planarity computed as one minus the mean of the dot product between the normal
to the plane against the neighbourhood normals [30], where the normal corresponds
to the singular vector associated to σ3; and, the superpixel vertical orientation as an
absolute value of its normal’s vertical component.

The superpixel neighbourhood N refers to all the superpixels in contact with
superpixel s in the image. In Table 1 we also show the default values and the dimen-
sionality of these observations. As a result we compute for each superpixel a very
simple 21 dimensional feature vector with 13 elements from Image features and 8
from 3D features.

Pairwise potentials
We define two pairwise potentials, one capturing the color proximity gc(xi,x j,z)
and the other the metric proximity gm(xi,x j,z) of two superpixels. The potentials
are:

gc(xi,x j,z) =
{

1− exp(−‖ci− c j‖2)→ li = l j
exp(−‖ci− c j‖2) → li 6= l j

(5)

gm(xi,x j,z) =
{

1− exp(−‖pi−p j‖2)→ li = l j
exp(−‖pi−p j‖2) → li 6= l j

(6)

where ‖ci − c j‖2 and ‖pi − p j‖2 are the L2-Norm of the difference between the
mean colors in the LAB-color space, and centroid’s 3D positions, respectively, of
two superpixels and l is the class label.

3.5 Recursive Inference
So far we have described all the components to carry out the inference in a single
frame composed by an image and a 3D point cloud. But in a normal operation of
a robot, this information comes streamed. We would like to take an advantage of
the sequential nature of the data to carry out the inference without losing the single
frame if needed, while keeping the robustness against, for instance, lost frames or
odometry failures.

Let Ck be the coordinate frame of reference in time k and kpk−1 the 3D coordi-
nates of the nodes x in frame k−1 in Ck. Let k

k−1T be the transformation from Ck−1
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Fig. 2 Toy example for the sequence semantic segmentation process. (a) Suppose that the robot
gathers the image and point cloud at time k = 0, the image is over-segmented and the nodes are
placed in the clusters’s centroids. (b) The Euclidean MST provide the graph structure for our CRF,
where the inference takes place. (c) The same as (a) in the next time step. (d) We transform the
centroids from the previous time step to the current one, the state of the corresponding nodes is
now known (blue filled circles). (e) A new MST is computed between all the nodes, known and
unknown. The new graphical model is a forest as the edges between known nodes (red lines) are
not used in the inference process.

to Ck given by the robot odometry. In the first frame k = 0, we infer the state of each
node in the graph as described before for a single frame. For k = 1 we follow the
procedure as in single frame case, computing the superpixels, the features and the
data-term. Then we transform the 3D coordinates of nodes at k = 0 to C1 by com-
puting 1p0 = 1

0T × 0p0. With the set [1p0,1 p1] a new MST is computed. These steps
are described in Fig. 2. Now, we can proceed to compute the pairwise potentials
over the edges in this new graph and carry out the inference, estimating the state of
1x1 conditioned over the states of 0x0. This process is repeated for the next time k,
conditioning only over the state in k−1. The nodes in k−2 are no more taken into
account as we assume a filtering approach for the inference, Eq. 7.
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Fig. 3 Original ground truth as released by [23] and the effective ground truth with 3D information
used in this paper.

p(xk|xk−1,xk−2, . . . ,x0,zk,zk−1, . . . ,z0) = p(xk|xk−1,zk) (7)

Note that we have omitted the left superscript in Eq. 7 to denote the coordinate
frame of reference as this choice does not affect the inference as long as all the
nodes are expressed in a common reference frame.

Given the observed nodes the graph structure becomes a forest, see Fig. 2(e).
We can find two extreme cases when we carry out the inference to compute
p(xk|xk−1,zk). The first one is when the robot and the scene are static, in this case
the spatial locations of xk are expected to be very close to xk−1. Since the xk−1 is
now treated as evidence, we would obtain at most a forest with nk (number of nodes
in time k) trees of size 2 connecting the corresponding nodes between k− 1 and k.
The inference for each node xk

i is just a weighted average between the state from the
local evidence zk through the data term and the already inferred state xk−1

i through
the pairwise terms. The second case is when the motion between consecutive frames
exceeds the range of the sensor, in which case would be only one edge connecting
xk and xk−1. In this case p(xk|xk−1,zk) approaches a single frame case p(xk|zk) as
the distance between frames increases.

Our MST connecting point clouds from two different timestamps gives us a ro-
bust way to avoid common errors from data association algorithms in dynamic en-
vironments. Even more, this MST graph structure is only telling us that there is a
relation between the connected nodes and that it is likely, up to their 3D distance,
they belong to the same category; but not, whether they are the same physical entity
or a landmark.

4 Experiments
For our experiments we use the KITTI dataset [9], which contains images (1240x380)
and 3D laser data taken for a vehicle in different scenarios. We demonstrate the per-
formance of our approach on data from urban residential and city scenes. There are
70 manually labelled non-sequential images as ground truth made available by [23],
45 for training and 25 for testing. The original classes released by [23] are: road,
building, vehicle, pedestrian, pavement, vegetation, sky, signal, post/pole and fence.
We have mapped those to the four classes: ground (road and pavement), building,
vegetation, and things (vehicle, pedestrian, signal, pole and fence). The sky class
is omitted as we carry out the inference only in the portion of the image where we
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Table 2 Semantic segmentation for single view in pixel-wise percentage recall accuracy.

Ground Objects Building Vegetation Average Global
Data-term: k-NN (Eq. 3) 96.8 75.9 80.7 77.6 82.8 83.5

CRF MST k-NN
only Image Features 96.8 49.2 64.6 95.5 76.5 76.8
only 3D Features 95.9 84.2 80.5 46.7 76.8 78.8
All 97.3 82.9 82.8 86.9 87.5 88.4

Table 3 Results and timing for single view vs recursive segmentation.

Ground Objects Bulding Vegetation Time MST Time BP

Single view
Recall 0.973 0.829 0.828 0.869

21ms 164msPrecision 0.981 0.881 0.916 0.759
F1 0.977 0.854 0.870 0.811

Recursive Inference
Recall 0.975 0.836 0.832 0.855

57ms 69msPrecision 0.980 0.871 0.931 0.767
F1 0.977 0.853 0.879 0.809

have 3D data. For our system the effective manually labeled region in the image is
reduced as the laser returns span up to 3.2m above the ground and the maximum
range that we consider is 30m. As such we use only that ground truth image region
for training and for the quantitative evaluations in testing, see Fig. 3.

We obtain the superpixel segmentation using SLIC implementation from the
VLFeat library of [27], followed by the computation of the features described in
Table 1. With the computed features in the training set we build a kd-tree using the
implementation of [4] with the default parameters. We obtain the k-NN classifica-
tion for the data using Eq. 4 with the k = 10 nearest neighbours.

Now, using the MST graph, the output of the local classifier in Eq. 3 and the pair-
wise potentials, Eq. 5, we learn the parameters in the CRF setting. For the learning,
inference and decoding with CRFs we use the Matlab code for undirected graphical
models (UGM).1

At the testing time, to obtain the most likely label assignment for the superpix-
els we solve the MAP problem for the model. This problem does not require any
threshold selection and all the parameters are learned from the data. The inference
results give us the labeling assignments over superpixels, we transfer those to every
pixel in the superpixel to compute the pixel-wise accuracy of semantic labeling. In
Fig. 1 we show several examples of the output of our approach in the single frame
setting.

In Table 2 we show the pixel-wise recall accuracy along with the average and
global accuracy for our approach: CRF MST k-NN which uses image and 3D fea-
tures. To study the importance of image features vs 3D features, we remove one set
at a time keeping the rest of the system intact. The rows only Image Features and
3D Features show the corresponding performance when using one kind of features.
The main contribution of the images features is placed in the vegetation class, while
the 3D features improve the objects and building classes. Our full system, with both
sets of features obtains the best trade off between all performance measures.

1 Code made available by Mark Schmidt at http://www.di.ens.fr/ mschmidt/Software/UGM.html
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The row data-term in Table 2 shows the result of the k-NN classification using
the image and 3D information. It is clear that the MST and the CRF framework
improve the general performance.

Given that the manually labeled testing frames belong to the same KITTI se-
quence (000015), we run our approach over the full sequence and compute the im-
pact on the accuracy by our recursive inference processing. To that end we compute
the odometry using the open-source libviso2 [10], using the default parameters pro-
vided with the library. Table 3 shows the results and the timing for the stages that
change with respect to single view segmentation. We can see that there is no signifi-
cant difference in the accuracy, and even when the cost of computing the MST with
greater number of nodes has increased, the belief propagation is now even more ef-
ficient. Our approach is able to reach simultaneously high recall and precision for
all the classes, with F0.5 of 0.96 for ground, 0.87 for objects, 0.90 for buildings, and
0.78 for vegetation, compared for example with a F0.5 of 0.62 and 0.52 for grass
and bush, 0.91 and 0.67 for tarmac and dirt path, and 0.78 and 0.71 for textured and
smooth walls, reported by [21] with a labeling system using spatio-temporal context
and spending 4s per frame.

Although our approach is not directly comparable to [23] given the differences
in the classes, sensor modalities and the effective region used as ground truth we
can see similar performance in the average and global accuracies, 81.7% and 88.4%
reported by [23] with respect to 87.5% and 88.4% for us.

The results over the full sequence 000015 of 1900 frames is shown in Fig. 4.
The 3D laser returns are reprojected over the odometry. For clarity we split the
point cloud in four views corresponding to each class. This trajectory corresponds
to a loop in a residential part of the city. To detect the loop closures we use the
DLoopDetector library [8], with the default vocabulary and parameters for BRIEF
and geometrical checking with the epipolar constraint. To find the transformation
between candidates to loop closures we use ICP over the two point clouds excluding
those assigned as objects. This choice is because this class contains the entities that
could be dynamic (cars, people, bikes), hence seems reasonable enough aligning two
point clouds by their more stable components during one day: ground, buildings,
vegetation. The result after optimize the pose graph with g2o [13] is shown in Fig. 4
left.

To test how our system performs facing new environments, we carry out the
same semantic recursive inference over a sequence taken in the downtown with
high density of dynamic objects, see Fig. 5. In Fig. 5(a) two images are shown,
at the beginning and at the middle of the sequence. The probability of belonging
to the objects class is shown in the second row. We can see how the pedestrians,
cars, poles, chairs are all included in this class even when we do not have some of
these specific instances in the training data. In the third row of Fig. 5(a) we show
the final reprojected point cloud with textured of objects class from locations close
images in the first row, the ground is also shown in grey only for reference. In the
second column we can see the trajectories of the pedestrians. In Fig. 5(b) below, we
show the reprojected point cloud over the odometry trajectory for classes ground
and building. A zoom up in the second location of Fig. 5(a) is shown on the top
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Fig. 4 Results in KITTI sequence 000015 in a residential environment after optimize the trajectory
with the detected loop closures. In every image is shown the segmented points belonging to ground,
objects, building and vegetation (left to right and up to down). On the right we show a zoom up
along with a image of the corresponding region and the segmented results.

(a) (b)

Fig. 5 Segmentation by our recursive inference process in a high dynamic street in downtown. (a)
A couple of frames with the highlighted objects class. (b) Reprojected point cloud for the ground
and building class, on the top we show also the objects class.

and middle. In the first row the objects is included to highlight the importance of
recognize this class to allow a better and reliable 3D mapping.

LEUVEN Dataset:
We have also tested our system on the LEUVEN dataset [17], where a set of 70

labeled images and disparity maps were released by [15]. The images were gathered
in a residential neighbourhood at 316x216 pixels in resolution. We map the original
eight classes to three as follows: ground (road and sidewalk), building, and things
(car, person and bike). The sky again was omitted and the vegetation class was not
present in the labeling data. We show some of our results in Fig. 6.

We obtain a pixel-wise recall of 97.6% (ground), 79.3% (objects) and 98.4%
(buildings). While our average and global accuracies are 91.8% and 95.9%, [7] re-
port 82.4% and 95.4%, and [15] report 84.9% and 95.8%, respectively. Note the dif-
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Fig. 6 LEUVEN dataset. From the left, original image, disparity map, ground truth labeling, MAP
result from our proposal.
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Fig. 7 Pedestrian detection on a high dynamic sequence. (a) Bounding box for ground truth
(white), IKSVM [18] (blue and cyan) and weighted IKSVM with the evidence for the objects
class inside the box (blue). The objects class is highlighted in red. (b) The precision-recall curve
for this sequence with the IKSVM alone and weighted IKSVM by our objectness evidence.

ference for each system, [7] and [15] included the sky but omitted the person class.
Floros and Leibe [7] use at least 5 frames for the 3D reconstruction and manually
tune the parameters for the CRF. While Ladický et al. [15] solve a more complicated
problem inferring the disparity map jointly with the segmentation.

4.1 Pedestrian Detection
We can combine our segmentation with different object detectors. As an example
of this idea we present the results of combination of the efficient approximation of
HOG based pedestrian detection with sliding windows (IKSVM) of [18], with our
evidence of objects for the downtown sequence in Fig. 5. We compute the propor-
tion of pixels inside the bounding box belonging to the objects class to measure
the ”objectness” of the box. By weighting the score from the pedestrian detector
with this objectness measure the precision is improved, see Fig. 7(b). We can see in
Fig. 7(a) how detections in walls or vegetation are rejected (cyan) by the weighted
IKSVM. Note in the second image the bounding box in the center is too large for
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Fig. 8 Computational timing
performance for a sequence in
downtown with our recursive
inference approach, see Fig. 5.
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the actual size of the corresponding pedestrian resulting in rejection because a low
objectness. We are currently working to integrate the outcome of our segmentation
to guide the pedestrian (and other objects) detection, to improve the efficiency and
performance of the sliding window approach.

4.2 Timing
We compute the timing on the sequence of Fig. 5; our proposal is implemented
in Matlab. The computational cost is detailed in Fig. 8, excluding the superpixel
over-segmentation and the odometry computation. The on-line system runs at 1
fps in a single-thread of a 3.4 GHz IntelCore i7-2600 CPU M350 and 7.8GB of
RAM. For the whole system, the average and the maximum times are 778ms and
960ms, respectively. Although the cost to obtain the SLIC superpixels in our current
implementation is a bottleneck with almost 1.5 seconds, the GPU implementation
(gSLIC) of Ren and Reid [22] takes only 86ms for images of size 1280x960. The
libviso2 library spends 50ms per frame to compute the odometry. Solving the MAP
problem has the same computational cost than obtaining the marginals with the BP
algorithm. In the case of the LEUVEN dataset, our proposal spends in total only
231ms/282ms in average/max because of the lower resolution.

5 Discussion
We have presented a computationally efficient approach for semantic labeling of
urban street view sequences into structural, natural and object categories. The pro-
posed approach uses effectively 3D cues to generate evidence about the presence of
objects.

We have shown that our graph structure induced by the MST over 3D does not
sacrifice the labeling accuracy, and keeps the intra-class components coherently
connected. Furthermore, this choice enables an exact and efficient inference. The
computational cost is constant with respect to the length of the trajectory. The com-
putational complexity for the inference is O(nm2), where n is the number of nodes
in the graph, and m the number of classes.

Our recursive inference process consistently propagates the semantic segmenta-
tion over time in a efficient way, keeping a robust performance with not necessity of
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expensive data association techniques. The alignment transformation between two
consecutive frames is not needed to be perfect as we can assume with the current
state of the art in (visual, laser, IMU) odometry systems a reasonable accuracy. Still,
three possible failures could affect the recursive processing: frames are lost during
the data acquisition, the odometry system fails but it is detectable, and finally the
odometry fails resulting in a different motion model than the actual. In the two first
scenarios, the next acquired frame or during the detected failure our approach can
handle it as a single frame inference problem. In the last case, the data term is not
affected by this failure but the propagation of evidence through the graph and hence
the state estimation would be affected. An analysis of this influence is part of our
future research. So far we have shown a basic research implementation for a very ef-
ficient recursive inference process and we expect to provide a C++ implementation
with real time capabilities.
We demonstrated that our method can work in real scenarios, with dynamic objects,
in a different kind of streets from the training and with objects never seen before.

We see our proposal as the first stage of a scalable semantic understanding system
for mobile robots. The subsequent stages can use the obtained representation for
finding objects or use it for isolating the stationary part from the dynamic part of the
environment. This can further improve other tasks such long-term place recognition
or dynamic objects detection/estimation. The presented model can be extended in a
hierarchical manner to incorporate additional information about specific objects of
interest if those become available. Our method can be used in conjunction with [20]
to estimate the motion model of generic objects even if they are static in the scene.
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