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Fig. 1: Our novel semantic parsing approach can seamlessly integrate evidence from multiple sensors with overlapping but possibly different fields of view
and account for missing data, while predicting semantic labels over the spatial union of sensors coverages. The semantic segmentation is formulated on
a graph, in a manner which depends on sensing modality. First row: (a) over-segmentation on the image; (b) graph induced by superpixels; (c) 3D point
cloud re-projected on the image with a tree graph structure computed in 3D, and (d) the full graph as proposed here for full scene understanding. In the
second row is the semantic segmentation (a) ground truth and results of (b) using the image graph and only visual information; (c) using the 3D graph
and visual and 3D information, and finally (d) the result from using a graph for full coverage and all the information. Note the best semantic segmentation
achieved over the union of the spatial coverage of both sensors. Color code: ∎ground, ∎objects, ∎building and ∎vegetation.

Abstract— We propose a new approach to semantic parsing,
which can seamlessly integrate evidence from multiple sensors
with overlapping but possibly different fields of view (FOV),
account for missing data and predict semantic labels over the
spatial union of sensors coverages. The existing approaches typ-
ically carry out semantic segmentation using only one modality,
incorrectly interpolate measurements of other modalities or at
best assign semantic labels only to the spatial intersection of
coverages of different sensors. In this work we remedy these
problems by proposing an effective and efficient strategy for
inducing the graph structure of Conditional Random Field used
for inference and a novel method for computing the sensor
domain dependent potentials. We focus on RGB cameras and
3D data from lasers or depth sensors. The proposed approach
achieves superior performance, compared to state of the art and
obtains labels for the union of spatial coverages of both sensors,
while effectively using appearance or 3D cues when they are
available. The efficiency of the approach is amenable to real-
time implementation. We quantitatively validate our proposal
in two publicly available datasets from indoors and outdoors
real environments. The obtained semantic understanding of the
acquired sensory information can enable higher level tasks for
autonomous mobile robots and facilitate semantic mapping of
the environments.

I. INTRODUCTION

In recent years numerous advances have been made in

semantic mapping of environments. Associating semantic

concepts with robot’s surroundings can enhance robot’s

autonomy and robustness, facilitate more complex tasks
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and enable better human robot interaction. One important

component of semantic understanding is so called semantic

segmentation, which entails simultaneous classification and

segmentation of the sensory data.

In the computer vision community large variety of ap-

proaches have been proposed using only appearance features

computed from RGB images or sparse 3D geometric features

computed by structure from motion techniques. The most

successful approaches for semantic segmentation typically

use Markov or Conditional Random Fields (MRFs or CRFs)

framework [6,12,16,23,26] and vary in the types of features

used, the local classifiers and the graph structure defining the

random field [16,23,26]. With the exception of few [6,12],

most commonly the graph structure is induced by super-

pixels obtained by over-segmentation algorithms on individ-

ual pixels.

In robotics community an active research topic is semantic

segmentation of 3D point clouds from laser range finders

[9,25]. The method of Triebel et al. [25] implements an

online clustering for the point cloud and carries out the

inference in a CRFs setting. While Hu et al. [9] carry

out the segmentation through a cascade of classifiers from

fine to coarse point cloud clusters. Nowadays many robotic

platforms use simultaneously both cameras and 3D lasers

for outdoor navigation, and RGB-D cameras for indoors,

which are calibrated with respect to each other. The use of

these modalities creates opportunities for using richer set of

features as well as obtaining better coverage. In the common

approaches for semantic segmentation proposed [3,20], the

features and the graphical model are constrained to the



area that is covered simultaneously by both sensors. Areas

covered by only one of the sensors are not considered. For

example in the case of cameras and lasers commonly used in

outdoors setting, due the small FOV of laser range sensors

the upper portion of the image is typically discarded from

evaluation, see Fig. 1(c).

In the case of RGB-D sensors for indoors environments,

while the depth data cover almost the same area as the RGB

sensor, many image regions have missing corresponding 3D

data due to specular or transparent surfaces or large depth

values which cannot be estimated reliably with the sensor,

see Fig. 7 (second column). The missing depth values are

typically filled by using different in-painting strategies to

obtain dense depth images [10,22], resulting in a full overlap

between the RGB and depth channels. The in-painted depth

is used by [4,5,8,22] for RGB-D in their semantic parsing

approaches. Both Silberman et al. [22] and Gupta et al. [8]

also exploit computationally demanding boundary detectors

and expensive engineered features. The work of Cadena

and Košecká [4] does not require dense depth but it is

able to obtain labels only in regions with common sensor

coverage. While the in-painted depth images provide a partial

solution to a missing data problem, the interpolated depth is

often incorrect and available algorithms are computationally

expensive (15s/frame), making them unsuitable for real-time

operation.

Contribution: In this work we tackle these issues by

proposing an effective and efficient strategy for inducing

the graph structure of Conditional Random Field used for

inference and a novel method for computing the sensor

domain dependent potentials. We achieve superior semantic

segmentation for the regions in the union of spatial coverage

of the sensors, while keeping the computational cost of

the approach low. The problem is illustrated in Fig. 1. For

example with an image sensor note how in column (b) one

portion of the car is confused with the ground because their

colors are similar. When we combine the visual sensing with

the evidence from a 3D laser sensor, we are able to mitigate

sensor specific perceptual confusers, column (c), but now

we are only able to explain a subset of the scene, the spatial

intersection coverage, leaving us without output for the car

glass and the building in the top portion of the image. With

the strategy proposed in the remaining of the paper, we take

advantage of both sensor modalities without discarding the

non-overlapping zones, column (d) in Fig. 1.

Related work: This problem was also addressed by

Muñoz et al. [18], as a co-inference problem, where a

cascade of classifiers are used over a hierarchy of over-

segmentations in each modality, image and 3D. The prop-

agation of evidence between modalities is achieved by using

the partial classification results from a modality, at each

level of the hierarchy, as input for the classification in the

other modality in the overlapping regions. They validate the

approach on their own urban dataset containing images and

off-line processed 3D point clouds. Later, re-projecting the

3D on the camera poses to emulate an on-line acquisition.

Some issues like, e.g., no handle of occluded structures from

each point of view, make the emulation a non-realistic one.

In terms of timing, the computational cost increases linearly

with the number of sensors as they are solving a classification

problem for each one. After an expensive (image and 3D)

feature extraction, the co-inference takes 0.46s to classify

one scene. Beyond the framework and features, our approach

differs in the use of an augmented feature space whenever

possible and our computational complexity depends on the

size of the scene rather than on the number of sensors. In our

case we propose to augment CRFs framework by proposing

a unified graphical model and using simple, and efficient to

compute, features in each modality to define proper energy

potentials.

In the next section, we recall the general formulation of

Conditional Random Fields, then in Section III we describe

the application of CRFs to the semantic segmentation prob-

lem for images, intersection of image and 3D, and at last

our proposal for the union of image and 3D. In Section

IV we describe the experiments in outdoors and indoors

datasets. We show the advantages of our approach using

all the information available, and compare the results with

state of the art methods. Finally, in Section V we present

discussions and conclusions of the presented work.

II. GENERAL FORMULATION

CRFs directly model the conditional distribution over the

hidden variables given observations p(x∣z). The nodes in a

CRF are denoted x = ⟨x1,x2,⋯,xn⟩, and the observations

are denoted z. In our framework the hidden states correspond

to the m possible classes: xi = {ground, objects,⋯}. A

CRF factorizes the conditional probability distribution over

hidden states into a product of potentials, as:

p(x∣z) = 1

Z(z) ∏i∈N φ(xi,z) ∏
i,j∈E

ψ(xi,xj ,z) ∏
c∈H

η(xc,z)
(1)

where Z(z) is the normalizing partition function, ⟨N ,E⟩ are

the set of nodes and edges on the graph, andH represents the

set of high order cliques. The computation of this function

is exponential in the size of x.

The unary, or data-term, and pairwise potentials are rep-

resented by φ(xi,z) and ψ(xi,xj ,z), respectively, as their

domains span over one and two random variables or nodes in

the graphical model. The domain for higher order potentials

η(xc,z) span over cliques of three or more fully connected

nodes. In the remainder we consider only the data and pair-

wise terms, choice commonly referred to as pairwise CRFs.

The potentials are functions that map variable configurations

to non-negative numbers capturing the agreement among the

involved variables: the larger a potential value, the more

likely the configuration.

Potentials are described by log-linear combinations of

feature functions, f and g, i.e., the conditional distribution

in Eq. 1 can be rewritten as:

p(x∣z) = 1

Z(z) exp
⎛
⎝∑i∈N wT

u f(xi,z) + ∑
i,j∈E

wT
p g(xi,j ,z)⎞⎠

(2)



Fig. 2: CRF over a graphical model with two different sources of informa-
tion.

where u and p stand for unary and pairwise, respectively; and

wT = [wT
u ,w

T
p ] is a weight vector, which represents the im-

portance of each feature function. CRFs learn these weights

discriminatively by maximizing the conditional likelihood of

labeled training data.

Fig. 2 shows an example where the random variables cap-

ture two different sources of information A and B, thus we

can define different unary and pairwise potentials depending

of the type of available information. The CRFs formulation

for the graphical model shown in Fig. 2 in terms of Eq. 2

is:

p(x∣z) = 1

Z(z) exp
⎛
⎝ ∑i∈NA∖B

ωu1f1(xi,zA) +
∑

i∈NA∩B

ωu2f2(xi,zA,B) + ∑
i∈NB

ωu3f3(xi,zB)+

∑
i,j∈EA

ωp1g1(xi,j ,zA) + ∑
i,j∈EB

ωp2g2(xi,j ,zB)⎞⎠
where A and B stand for “green” and “blue” domain. We

observe different feature function depending on the available

domain: f1 is computed for nodes with access only to domain

A; f3 is computed for nodes with access to domain B; and f2

is added for nodes with access to both, A and B. Similarly

for edges, two pairwise functions are computed, g1 if the

edge connects two nodes with information from A available

and g2 with information from B.

With this formulation we can obtain either the marginal

distribution over the class of each variable xi by solving

Eq. 2, or the most likely classification of all the hidden

variables x. The latter can be formulated as the maximum
a posteriori (MAP) problem, seeking the assignment of x
for which p(x∣z) is maximal.

In summary the conditional probability distribution can be

modelled by defining a graph structure relating the random

variables, and the feature functions with the proper domain

depending on the information available.

III. SEMANTIC SEGMENTATION WITH CRFS

Given the general formulation for CRFs, we want to apply

it to our problem of semantic segmentation. First we show

Fig. 3: On top, the original image with the SLIC superpixel over-
segmentation [1]. Below, the image graph computed from the superpixels’
neighbourhood.

how to solve the problem using only visual information

acquired from a monocular camera. Then, we describe the

proposal of [3] when we have two sensor modalities with

common spatial coverage, in this case visual and 3D infor-

mation. And finally, we show our strategy for the same two

sensor modalities but with different spatial coverage.

A. Image only

This is a classic problem in computer vision. The strategy

explained here is a basic approach which allows us explain

the recipe for semantic segmentation with CRFs.

1st: The first step is to define the graph. We adopt

commonly used strategy of superpixel over-segmentation to

obtain the nodes in the graph, and the edges are defined by

the superpixel neighbourhood in the image. To illustrate this

step the image over-segmentation and the image graph are

shown in Fig. 3.1

2nd: In the second step we define the unary and

pairwise feature functions. For the unary feature function

(Eq. 3) we use a k-NN classifier (Eq. 4) as defined in [24].

f1(xs,zim) = − logPs(xs∣zim) (3)

Ps(xs = lj ∣zim) = 1

∑m
j=1 ( f(lj)

F(lj)

f(lj)
F(lj)
)

f(lj)
F(lj)

f(lj)
F(lj) (4)

where f(lj) (resp. f(lj)) is the number of neighbours to

superpixel s with label lj (resp. not lj) in the kd-tree. And

F(lj) (resp. F(lj)) is the counting of all the observations in

the training data with label lj (resp. not lj).

In the outdoors case [3], the 13-D feature vector is

composed from the mean and standard deviation of LAB

and RGB color spaces of the superpixel, and by the vertical

superpixel centroid in the image. In the indoors case [4], the

8-D feature vector is composed from the mean and standard

deviation of LAB color space, the vertical superpixel centroid

in the image, and the entropy of the probability distribution

1For the sake of visual clarity the example in Figs. 3, 4 and 5 use a coarser
over-segmentation than the actually used in the experimental section.



Fig. 4: On top, the 3D point cloud re-projected on the image. Below, the 3D
graph (blue) computed as the minimum spanning tree over the Euclidean
3D distances between superpixels and re-projected on the image.

for the superpixel’s boundaries belonging to the dominant

vanishing points.

The pairwise feature function is defined in Eq. 5.

g1(xi,j ,zim) =
⎧⎪⎪⎨⎪⎪⎩
1 − exp (−∥ci − cj∥2) → li = lj
exp (−∥ci − cj∥2) → li ≠ lj (5)

where ∥ci − cj∥2 is the L2-Norm of the difference between

the mean colors of two superpixels in the LAB-color space

and l is the class label.

3rd: The next step is the learning stage and finally the

inference. Given that we have defined a cyclic graph structure

the inference is carried out by loopy belief propagation and

the learning of the weights [wu1 ,wp1] by minimizing the

negative log pseudo-likelihood [11].

B. Image and 3D: Intersection

When information from another sensor becomes available

we want to infer the class in the spatial regions that are

covered by all the sensors. In this case, we want to use the

visual information jointly with the 3D information from a

laser range finder or from a depth sensor. The steps described

here are a summary of the proposals in [3] for outdoors and

[4] for indoors.

1st: We use the superpixel over-segmentation to obtain

the nodes in the graph. Hence, the 3D point cloud is clustered

through this over-segmentation by re-projecting them on

the image. The graph edges are defined by the minimum

spanning tree (MST) over the Euclidean distances between

3D superpixel’s centroids in the scene. The area of coverage

of the laser and the 3D graph are shown in Fig. 4.

2nd: The unary and pairwise feature functions take the

same form of Eqs. 3 and 5. But with the new information

available we augment the feature vector for the kd-tree in

the k-NN classifier. The previous feature vector is augmented

with a 8-D vector of 3D features, containing the 3D centroid,

the local and neighbourhood planarity, the vertical orienta-

tion, and the mean and std for the differences in depth for the

superpixel wrt. its image neighbours. In the indoor case the

horizontal coordinate for the centroid is not used, ending in

a 7-D vector of 3D features. Eq. 6 shows the unary feature

Fig. 5: Full graph. The edges determined by the 3D distances are in blue,
and those by color distances are in green. We have shaded the image area
with no 3D data related.

function using this new k-NN classifier and Eq. 7 is used

jointly with Eq. 5 as pairwise feature functions.

f2(xs,zim,3D) = − logPs(xs∣zim,3D) (6)

g2(xi,j ,z3D) =
⎧⎪⎪⎨⎪⎪⎩
1 − exp (−∥p⃗i − p⃗j∥2) → li = lj
exp (−∥p⃗i − p⃗j∥2) → li ≠ lj (7)

where ∥p⃗i − p⃗j∥2 is the L2-Norm of the difference between

centroid’s 3D positions.

3rd: In this case the MST over 3D has induced the tree
graph structure, as such the inference process can be carried

out in an exact way efficiently by the belief propagation

algorithm [11]. The learning of the weights [wu2 ,wp1 ,wp2]
is done as before.

C. Image and 3D: Union

In the previous approach the graphical model is induced

by 3D point cloud, and is able to explain only the intersection

of the field of view of the camera and the 3D sensor.

In the proposal presented below, we show how to assign

semantic labels to the union of spatial coverage of both

sensors.2 We do so by augmenting the three ingredients of the

CRFs approach (graph structure, potentials and learning and

inference) to incorporate non-overlapping sensor coverage.

In the experimental section we demonstrate improvements in

the semantic segmentation accuracy, while maintaining the

efficiency of the system.

1st: To build the full graph we need edges relating the

3D point cloud, the image and some connection between

them. We first rely on the approach presented in the previous

section and construct the sub-graph over the intersection of

sensors coverage. Namely, we use the superpixels to cluster

the point cloud but note that any other 3D clustering method

is suitable for this purpose if the image is not available. Then,

the 3D sub-graph is identical to that shown in Fig. 4. For

the image sub-graph we use the image superpixels’ neigh-

bourhood without 3D information, a subset of Fig. 3 bottom.

Note that some of the neighborhood edges end in the nodes

of the 3D sub-graph giving us the connection between sub-

graphs. Within this set of connections we find a MST over

the distances between the superpixels’ LAB-color space,

2The 3D laser has actually 360○ of horizontal field of view but the ground
truth labels are not available outside of image field of view. Note that the
approach proposed here is equally applicable to parts with only 3D data
extending the 3D graph to some point cloud over-segmentation, in which
case the graphical model would take the form of Fig. 2.



TABLE I: KITTI dataset, semantic segmentation recall accuracy in pixel-wise percentage.

ground objects building vegetation sky Average Global Coverage

road pavem. car fence post people sign.

Image only

Sengupta et al. [21] 98.3 91.3 93.9 48.5 49.3 — — 97.0 93.4 — 81.7 88.4 —

CRF−Im 97.8 61.1 87.4 94.6 97.6 87.7 85.5 100

CRF−Im∩ 3Da [3] 97.3 82.9 82.8 86.9 — 87.5 88.4 60.1

CRF−Im∪ 3D 96.6 83.6 86.1 94.3 93.7 91.6 90.1 100
aAccuracy computed over the effective coverage region.
— stands for values that are no provided in [21] or are not possible to obtain with the approach of [3].

Fig. 6: Results of different settings on KITTI dataset. From left to right: CRF−Im, CRF−Im∩ 3D and CRF−Im∪ 3D. Color code: ∎ground, ∎objects,
∎building, ∎vegetation and ∎sky.

inducing the image sub-graph. In Fig. 5 we show the graph

for the full coverage, the 3D sub-graph in blue and the image

sub-graph in green.

2nd: We have already shown very simple and effective

features for each sensing modality. We will use the associated

feature functions with their proper domain, as follows:

f1(xs,zim) if s ∈ im ∖ 3D
f2(xs,zim,3D) if s ∈ im ∩ 3D
g1(xi,j ,zim) if i ∧ j ∈ im
g2(xi,j ,z3D) if i ∧ j ∈ 3D

This is the same case already shown in Fig. 2 after

removing f3 .

3rd: The weight vector to learn in this setting is

composed by [wu1 ,wu2 ,wp1 ,wp2], which is again obtained

by minimizing the negative log pseudo-likelihood. The in-

ference is carried out by loopy belief propagation because

even though the two sub-graphs are trees, the full graph

contains loops. However, we have found that convergence

was achieved in all of our experiments in very few iterations.

IV. EXPERIMENTS

We report the performance of the proposed method on two

different real environments, urban outdoors and indoors. In

outdoors we use Velodyne laser range sensor and camera and

in indoors Kinect RGB-D sensor.

A. Outdoors: Image + 3D laser scan

We use the KITTI dataset [7], which contains images

(1240x380) and 3D laser data taken for a vehicle in different

urban scenarios. There are 70 manually labelled images as

ground truth made available by [21], 45 for training and

25 for testing. The original classes released by [21] are:

road, building, vehicle, people, pavement, vegetation, sky,

signal, post/pole and fence. We have mapped those to five

more general classes: ground (road and pavement), building,

vegetation, and objects (vehicle, people, signal, pole and

fence) and sky.

In this experiment we test the three cases of sensor

overlap described in Section III; semantic segmentation using

only the image information: CRF−Im, using the intersection

between image and 3D: CRF−Im∩3D, and using the full

coverage: CRF−Im∪3D. The results are shown in Fig. 6

and Table I for a qualitative and quantitative evaluation,

respectively. As reference we show the results reported in

[21] in Table I. Using only the image information, CRF-

Im, we can obtain very good results in classes like ground,

vegetation and sky, but a poor performance in objects.

Adding shape evidence, CRF-Im∩3D, the performance on

the objects class is boosted with the disadvantage of parts

of the scene with no semantic explanation. When we use

all the available information, CRF-Im∪3D, we obtain the

best average performance over all the classes and solve the

deficiencies of using only one modality without sacrificing

the coverage of the scene. For instance in Fig. 6, the mistake



TABLE II: NYU dataset, semantic segmentation recall accuracy in pixel-wise percentage.

ground furniture props structure Average Global In-painting Coverage

Silberman et al. [22] 68 70 42 59 59.6 58.6 Required 100

Couprie et al. [5] 87.3 45.3 35.5 86.1 63.5 64.5 Required 100

CRF−Im∩ 3D [4] 88.4 64.1 30.5 78.6 65.4 67.2 Required 100

CRF−Im∩ 3D raw-depthb 88.5 69.0 23.1 78.6 64.8 67.4 No 74.6

CRF−Im∪ 3D 87.9 63.8 27.1 79.7 64.3 67.0 No 100
bAccuracy computed over the effective coverage region.

Fig. 7: Results of different settings on NYU dataset. First three columns show the RGB, the raw depth and the in-painted depth images. The next two
columns show the results of the system of [4] for CRF−Im∩ 3D using the raw and in-painted depths. The last column is the result from our proposal
CRF−Im∪ 3D using RGB and raw depth channels. Labels color code: ∎ground, ∎structure, ∎furniture and ∎props.

of assigning ground to the phone cable box is solved with

shape evidence, last row. And, the propagation through the

graph of building class solves the wrong assignment of sky
to part of the house, second row.

In terms of efficiency the average cost, after segmenta-

tion and feature computation, is 40ms for CRF−Im, 16ms

for CRF−Im∩3D, and 23ms for CRF−Im∪3D. With GPU

implementation for SLIC superpixels and features extraction

in Matlab any of the settings runs in less than one second.

B. Indoors: Kinect sensor

We use the NYU V2 RGB-D dataset [22], which contains

1449 labeled frames. The labeling spans over 894 different

classes produced using Amazon Mechanical Turk. The au-

thors of the dataset also provide a train and test splits and a

mapping from 894 categories to 4 classes: ground, structure,

furniture and props, as was used in [22]. We take 795 frames

for learning, and the remaining 654 frames for testing and

quantitative comparison.

In this experiment we want to evaluate the effectiveness of

in-painting techniques for obtaining dense depth vs using our

system CRF−Im∪3D over raw depth. In Table II we show

three state of the art results [4,5,22] using dense depth, also,

as reference the result of [4] using the raw depth (CRF-

Im∩3D raw-depth), and in the last row the result from our

proposal CRF−Im∪3D.

Our solution, CRF−Im∪3D, achieves state of the art

performance without the expensive extra in-painting stage.

A visual comparison in Fig. 7, shows the benefits of using

the union of both modalities more than their intersection.

For example, in the first and third rows of Fig. 7 the depth

data for the tables are missed and the in-painting does not

estimate the correct values, leading CRF−Im∩3D to assign

the class ground in those regions, something dangerous for

the navigation system in a mobile robot. Also in the third

row, the missing depth for the piano cover is filled by the in-

painting with the depth of the wall behind, resulting in wrong

labeling as structure. Those cases are correctly handled

by our CRF−Im∪3D strategy, where in the missing depth

regions only image information gives the local evidence



and the information from regions with depth is correctly

propagated through the graph to them. Note that for scenes

without missing depth both systems (∪ and ∩) are equivalent

(up to no overlap for different field of views).

In the indoors setting experiment the average computa-

tional cost, after segmentation and feature computation, is

7ms for CRF−Im∩3D using in-painting (15s), and 10ms for

CRF−Im∪3D using raw depth.

V. CONCLUSIONS

In this work we have addressed the problem of semantic

mapping using the information from different sensors. We

exploited the versatility and flexibility of the conditional ran-

dom fields, to connect and use different sensory modalities

in case they have different coverage areas. The presented

proposal also handles the cases of missing data commonly

encountered in RGB-D sensors and correctly propagates

evidence from areas with available 3D information.

We have tested our proposal on real data, from outdoors

and indoors environments, demonstrating its advantages over

the existing alternatives to the problem of semantic segmen-

tation. In our experiments due to the non-empty intersection

between sensor coverages, we obtained a connected graph,

but this is no a requirement for our approach. In fact, if

the final graph is a forest of tree we can still carry out the

inference process. The approach presented in this paper is

very standard, and can easily be adapted to the recursive

approach described in [3] for on-line semantic segmentation.

The outcome from our system can be used and enhanced

by specific object detectors in any (combination of) sensor

modalities.

In the future work we plan to apply our semantic seg-

mentation proposal to stereo cameras alone [13], and in

combination to the 360○ 3D laser sensor [7]. The approach

proposed and evaluated here is not limited to a fixed number

of sensors or sensor modalities. For instance, we can formu-

late the system for any number, and any kind of cameras:

CRF−Im1 ∪ Im2 ∪ . . . ImN , or combination with alternative

sensors (e.g. radar, thermal, or infra-red cameras) [15,17,19]:

CRF−Im∪Th∪Radar∪ IR∪3D.

The proposed augmented CRF framework which enables

single inference of sub-graphs, induced by different sensing

modalities, can be also applied to data association in place

recognition tasks [2].
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