
CS 310: HW3 Ackcell Spreadsheet

Chris Kauffman

Week 11-1



Logistics

Reading

I 21: Priority Queue/Binary
Heap

I 6.9: Priority Queue Interface

Today’s Menu
Priority Queues

HW3
I Milestones due tonight
I Final due Tuesday

End Game

7/13 Thu BST Removal, AVL Trees
7/18 Tue AVL / Red-Black Trees
7/20 Thu Priority Queues

Binary Heaps
HW3 Milestones Due

7/25 Tue HeapSort
Review / Evals
HW3 Final Due

7/27 Final Exam

Final Exam in 1 week
Will post Java Jeopardy review
later today, play Tue



HW3: AckCell

I Implement a spreadsheet
model

I Cells contain data:
Numbers, Strings, Formulas

I Formulas are parsed into
trees of FNodes

I DAGs track dependencies
between things, prevent
cycles, discuss next time

I Spreadsheet maps IDs like
A17 to cells, notifies cells of
changes in their
dependencies

I Milestones Concern only the
Cell class, due next Thu

I Project designed write
classes in this order

I First Cell.java
I Second DAG.java
I Lastly tie them together

in SpreadSheet.java

I Final deadline Tue before
final



Cell Formulas
I Cell formulas are the first hurdle
I Provided FNode.parseFormulaString(str) parses formulas

FNode root = FNode.parseFormulaString("=(100 + A2) - 10 / (CX5 * BB8)");
I Requires formula.jar library; experiment on command line

> javac -cp formula.jar:. FNode.java
> java -cp formula.jar:. FNode
usage: java -jar formula.jar ’formula to interpret’
Example: java -jar formula.jar ’=A1 + -5.23 *(2+3+A4) / ZD11’
> java -cp formula.jar:. FNode ’=1 + 2*A4 / (7+BB8) - Z2’
-

+
1
/

*
2
A4

+
7
BB8

Z2
I Discuss basic strategy for walking/evaluating FNode trees
I Required for cell.evalFormulaTree(str,cellMap) and

cell.getUpstreamIDs()



Cell: Subclass vs Single Class
abstract class Cell{

public abstract String kind();
public static Cell make(String s){

if(s is a formula){
return new FormulaCell(s);

} else if(s is a number){
return new NumberCell(s);

}
...

}
}
class StringCell extends Cell{

@Override public String kind(){
return "string";

}
}
class FormulaCell extends Cell{

private FNode formulaRoot;
@Override public String kind(){

return "formula";
}

}
class NumberCell extends Cell{

@Override public String kind(){
return "number";

}
}

public class Cell{
private String myKind;
private FNode root;
public static Cell make(String s){

Cell c = new Cell();
if(s is a formula){

c.kind = "formula";
c.root = set up tree;

} else if(s is a number){
c.kind = "number";
c.root = null;

} else {
c.kind = "string";
c.root = null;

}
return c;

}
public String kind(){

return this.kind;
}

}

Neither of these are "right", just tradeoff
design differently



Structure of Code for evalFormulaTree()
public static Double eval(node, cellMap){

if(node.type == TokenType.Plus){
Double leftVal = eval(node.left);
Double rightVal = eval(node.right);
return leftVal + rightVal;

}
else if(node.type == TokenType.Minus){

Double leftVal = eval(node.left);
Double rightVal = eval(node.right);
return leftVal - rightVal;

}
// Cases for multiply, divide, negate
else if(node.type == TokenType.Number){

// node.data contains a string of a number
// converts it to a double and return

}
else if(node.type == TokenType.CellID){

// node.data contains a string of a cell ref like C12
// look it up in cellMap and return its number
// throw evalForumlaException if the cell has no number value

}
else{

throw new RuntimeException("Error with TokenType ’"+node.type+"’");
}

}



DAGs: Directed Acyclic Graphs

I Directed Acyclic Graph
I Graph: Nodes connected by

links (vertices connected by
edges)

I Directed: Links between
Nodes have a direction
(arrow head)

I Acyclic: No cycles, can’t go
in circles



HW3 and DAGs

I DAG.java is an independent class, doesn’t know anything
about Cell or Spreadsheet

I Create an empty DAG and start adding upstream links to it
with add(id,links)

DAG dag = new DAG();
dag.add("A1",DAGDemo.toSet("B1","C1","D1"));
dag.add("B1",DAGDemo.toSet("C1","D1"));

I Keeps track of upstream links and downstream links
I Useful in spreadsheet context

spreadsheet.setCell("A1","=B1 + C1 * D1");

I A1 depends on B1 C1 D1: they are upstream
I Whenever B1 C1 D1 are changed, notify A1 as it is

downstream from them

I Play with this in DrJava: detect cycles



Exercise: Draw this DAG

I DAGDemo.java constructs this DAG with repeated
add(id,upstream) calls

I Draw the DAG based on downstream links

Upstream Links:
A1 : [E1, F1, C1]
C1 : [E1, F1]
B1 : [D1, C1]

Downstream Links:
E1 : [A1, C1]
F1 : [A1, C1]
D1 : [B1]
C1 : [A1, B1]



Answer: Draw this DAG

Upstream Links:
A1 : [E1, F1, C1]
C1 : [E1, F1]
B1 : [D1, C1]

Downstream Links:
E1 : [A1, C1]
F1 : [A1, C1]
D1 : [B1]
C1 : [A1, B1]

Consider the following DAG operation

dag.add("F1",toSet("G1","B1")); // allowed or not?



Demo of Depth First Search to Detect Cycles

1 boolean checkForCycles(Map LINKS, List PATH)
2 LASTNODE = get last element from PATH
3 NEIGHBORS = get neighbors of LASTNODE from LINKS
4
5 if NEIGHBORS is empty or null then
6 return false as this path has reached a dead end
7 otherwise continue
8 for every NID in NEIGHBORS {
9 append NID to the end of PATH

10 if the first element in PATH equals NID then
11 return true because PATH now contains a cycle
12 otherwise continue
13 RESULT = checkForCycles(LINKS,PATH) // recursive
14 if RESULT is true then
15 return true because PATH contains a cycle
16 otherwise continue
17 remove the last element from PATH which should be NID
18 }
19 after exploring all NEIGHBORS, no cycles were found so
20 return false


