
CS 310: Heapify and HeapSort

Chris Kauffman

Week 14-2



Binary Heaps

Great for building Priority Queues:

Op Worst Case Avg Case
findMin() O(1) O(1)
insert(x) O(logN) O(1)
deleteMin() O(logN) O(logN)

Questions

I What can’t one do with a binary heap that is possible with
BSTs and hash tables?

I What else can one do with binary heaps aside from building
priority queues?



Exercise: Sort data using a Binary Heaps/PQ

I Sort an array of stuff with a PQ/Binary heap
I Define the following method

// Sort an array using a priority queue
public static <T extends Comparable>
void heapSort(T data[]){ ... }

I T is Comparable
I data[] unsorted
I return: nothing, but data must be sorted after method finishes
I Use pq.insert(x) and pq.deleteMin()
I What is the complexity of heapSort()?

I Runtime complexity?
I Memory complexity?



Out of Place Sort Sucks

Initial solution required data duplication
I Copy from data to pq, then back
I Out of place sorting, double memory requirement

For large arrays this hurts
I Want truly in place sorting
I Don’t make copy, avoid O(N) space overhead

Is this possible for heap sort?



In-Place Sorting with Heaps: Three Problems

1. 1-indexing of heaps

I Not a problem: heap root at index 0
I Formulas for left(i), right(i), parent(i)?

2. Removing min

I Have a heap, repeatedly Remove the min
I Where to put it?

Exercise: How do you solve (1) and (2)?

3. Broken Heap

I Sorting methods start with unsorted array
I Heap property doesn’t hold - how to fix it?



1. Formulas for Different Root Locations

Root at 1

static int root(){ return 1; }
static int left(int i){ return i*2; }
static int right(int i){ return i*2+1; }
static int parent(int i){ return i / 2; }

Root at 0

static int root(){ return 0; }
static int left(int i){ return i*2+1; }
static int right(int i){ return i*2+2; }
static int parent(int i){ return (i-1) / 2; }



2. In Place Heap Sort

If we have a heap already. . .

Space Available

I Remove an element from a heap
I Now open space at end of array (percolate down)
I Put the removed element at end of array
I Repeat until empty

Min and Max Heap
Above process orders the array

I For Min-Heap will result in biggest to smallest
I For Max-Heap will result in smallest to biggest



Problem 3: Unsorted array to Heap

I How does one go from an unsorted array to a heap ordered
array?



Heapify, a.k.a. buildHeap()

Converts an existing array into a heap (!)

public void buildHeap( ) {
for( int i = parent(this.size); i >= root(); i-- ){

this.percolateDown( i );
}

}

Build the heap bottom up, repeated percolateDown(i)
I Start one level above bottom (where for size N heap?)
I Work right to left, low to high
I If small guy is down low, will bubble up



Heapify Example

Level 3: Initial, percolateDown([63])

Level 3: percolateDown([45]), percolateDown([12]),



Heapify Example

Level 3: percolateDown([20]), Level 2: percolateDown([21]),

Level 2: percolateDown([47]), Level 1: percolateDown([92]),



Exercise: Build me a Heap as Quick as You Can

public void buildHeap( ) {
for( int i = parent(this.size); i >= root(); i-- ){

this.percolateDown( i );
}

}

Discuss with a neighbor
I What is the runtime complexity of Heapify / buildHeap()?
I How many small moves versus big moves?
I Derive an expression for the worst possible number of moves



Complexity of Heapify
Heap size n, height h, assume complete (?)
Measure level from bottom

I Level 1 is bottom, has 2h-1 nodes,
I Level 2 is second from bottom, has 2h-2 nodes
I Level i is ith form bottom, has 2h-i nodes
I Level h is root, has 2h-h = 1 node

Each level i node can move i down so

moves =
h∑

i=1

i × 2h−i =

log2 n∑
i=1

i × 2log2 n−i

=

log2 n∑
i=1

i × 2log2 n

2i = n
log2 n∑
i=1

i
2i

≤ n × 2 = O(n)

because
∞∑
i=1

i
2i → 2



Summary of Heap Sort

Input: Array a
Output: a is sorted

Build Max Heap on a
for i=0 to length-1 a

tmp = findMax(a)
removeMax(a)
a[length-i-1] = tmp

done


