
CS 310: Priority Queues and Binary Heaps

Chris Kauffman

Week 14-2



Priority Queues

Queue
What operations does a queue support?

Priority: Number representing importance

I Convention lower is better priority
Bring back life form. Priority One. All other priorities rescinded.

I Symmetric code if higher is better

Priority Queue (PQ): Supports 3 operations

I void insert(T x,int p): Insert x with priority p
I T findMin(): Return the object with the best priority
I void deleteMin(): Remove the the object with the best

priority



Priority

Explicit Priority
insert(T x, int p)

I Priority is explicitly int p
I Separate from data

Implicit Priority
insert(Comparable<T> x)

I x "knows" its own priority
I Comparisons dictated by

x.compareTo(y)

Implicit is simpler for discussion: only one thing (x) to draw
Explicit usually uses a wrapper node of sorts

class PQElem<T> extends Comparable<PQElem>{
int priority; T elem;
public int compareTo(PQElem<T> that){

return this.priority - that.priority;
}

}



Exercise: Design a PQ

Discuss
I How would you design

PriorityQueue class?
I What underlying data

structures would you use?
I Discuss with a neighbor
I Give rough idea of

implementation
I Make it as efficient as

possible in Big-O sense

Must Implement

I Constructor
I void insert(T x): Insert

x, knows its own priority,
compare via
x.compareTo(y)

I T findMin(): Return the
object with the best priority

I void deleteMin():
Remove the the object with
the best priority, re-arrange
if needed



Exercise Results

Priority Queue implementations based on existing data structures

Data Structure insert(x) findMin() deleteMin() Notes
Sorted Array O(N) O(1) O(1) Keep min at high index
Sorted Linked List O(N) O(1) O(1) Min at head or tail
Binary Search Tree O(height) O(height) O(height) Min at left-most
AVL or Red-Black Tree O(log N) O(log N) O(log N) Height ≈ log N
Hash Table O(N) O(1) O(1) Tricky and pointless

Questions

I Do priority queues implement more or less functionality than
Binary Search Trees?

I Can we do better than these operational complexities?



Binary Heap: Sort of Sorted
I Most common way to build a PQ is using a new-ish data

structure, the Binary Heap.
I Looks similar to a Binary Search Tree but maintains a different

property

BST Property
A Node must be bigger than its
left children and smaller than its
right children

Binary Min-Heap Property
A Node must be smaller than its
children



Heap and Not Heap

Which of these is a min-heap and which is not?



Trees and Heaps in Arrays
I Mostly we have used trees of linked Nodes
I Can also put trees/heaps in an array

I Root is at 1 (discuss root at 0 later)
I left(i) = 2*i
I right(i) = 2*i + 1



Balanced v. Unbalanced in Arrays
Find the array layout of these two trees

I Root is at 1
I left(i) = 2*i
I right(i) = 2*i + 1

Q: How big of array is required?



Balanced v. Unbalanced in Arrays

0 1 2 3 4 5 6
48 17 89 3 25 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
17 3 48 25 89 63



Complete Trees
I Only "missing" nodes in their bottom row (level set)
I Nodes in bottom row are as far left as possible

Not Complete (Why?) Complete

I Complete trees don’t waste space in arrays: no gaps
I Hard for general BSTs, easy for binary heaps. . .



Trees/Heaps in Array: Keep them Complete

I Storing in arrays: can cost space overhead
I If the tree is complete or nearly so, little wasted space

BSTs in arrays

I Hard to keep tree complete
I BST + balancing property

makes it hard
I Rotations may not be

constant time anymore
I Trees not usually laid out in

arrays: linked nodes much
more common

Binary Heaps in arrays

I Very easy to keep tree
complete

I Heap Property is more loose,
easier to maintain

I No rotations, no worries..
I Binary heaps almost always

laid out in arrays



PQ Ops with Binary Heaps

I Use an internal T array[] of queue contents
I Maintaint min-heap order in array

Define
Tree-like ops for array[]

root() => 1
left(i) => i*2
right(i) => i*2 + 1
parent(i) => i / 2

T findMin()
Super easy

return array[root()];

insert(T x)
Ensure heap is a complete tree

I Insert at next array[size]
I Increment size
I Percolate new element up

deleteMin()
Ensure heap is a complete tree

I Decrement size
I Replace root with last data
I Percolate root down



Demos of Binary Heaps

Not allowed on exams, but good for studying

Min Heap from David Galles @ Univ SanFran

I Visualize both heap and array version
I All ops supported

Max Heap from Steven Halim

I Good visuals
I No array
I Slow to load

http://www.cs.usfca.edu/~galles/JavascriptVisual/Heap.html
http://visualgo.net/heap.html


Operations for Heaps

// Binary Heap, 1-indexed
public class BinaryHeapPQ<T>{

private T [] array;
private int size;

// Helpers
static int root(){

return 1;
}
static int left(int i){

return i*2;
}
static int right(int i){

return i*2+1;
}
static int parent(int i){

return i / 2;
}

// Insert a data
public void insert(T x){

size++;
ensureCapacity(size+1);
array[size] = x;
percolateUp(size);

}
// Remove the minimum element
public void deleteMin(){

array[root()] = array[size];
array[size] = null;
size--;
percolateDown(root());

}



Percolate Up/Down

Up

void percolateUp(int xdx){
while(xdx!=root()){

T x = array[xdx];
T p = array[parent(xdx)];
if(doCompare(x,p) < 0){

array[xdx] = p;
array[parent(xdx)] = x;
xdx = parent(xdx);

}
else{ break; }

}
}

Down

void percolateDown(int xdx){
while(true){

T x = array[xdx];
int cdx = left(xdx);
// Determine which child
// if any to swap with
if(cdx > size){ break; } // No left, bottom
if(right(xdx) < size && // Right valid

doCompare(array[right(xdx)], array[cdx]) < 0){
cdx = right(xdx); // Right smaller

}
T child = array[cdx];
if(doCompare(child,x) < 0){ // child smaller

array[cdx] = x; // swap
array[xdx] = child;
xdx = cdx; // reset index

}
else{ break; }

}
}



PQ/Binary Heap Code

BinaryHeapPQ.java

I Code distribution today contains working heap
I percolateUp() and percolateDown() do most of the work
I Uses "root at index 1" convention

Text Book Binary Heap

I Weiss uses a different approach in percolate up/down
I Move a "hole" around rather than swapping
I Probably saves 1 comparison per loop iteration
I Have a look in weiss/util/PriorityQueue.java



Complexity of Binary Heap PQ methods?

T findMin();
void insert(T x); // x knows its priority
void deleteMin();

Give the complexity and justify for each



Height Again. . .

Efficiency of Binary Heap PQs

findMin() clearly O(1)
deleteMin() worst case height
insert(x) worst case height

Height of a Complete Binary Tree wrt number of nodes N?

I Guesses?
I Do some googling if you are feeling cowardly. . .



This is how rumors get started

Weiss’s Assertion: insert is O(1)
On average the percolation [up] terminates early: It has been shown that 2.6
comparisons are required on average to perform the add, so the average add
moves an element up 1.6 levels.

I Weiss 4th ed pg 815

Precise results on the number of comparisons and data movements used by
heapsort in the best, worst, and average case are given in (Schaffer and
Sedgewick).

I pg 839
I Schaffer and R. Sedgewick, "The Analysis of Heapsort," Journal of

Algorithms 14 (1993), 76–100.



And how rumors resolve

Binary Heaps DO have O(1) amortized insertion

Empirical Evaluation Mathematical Proof
I Schaffer/Sedgewick (1991)
I → Carlsson (1987)
I → Porter/Simon (1974):

"note pg. 15 in which the
average case is stated to be
upper-bound by lambda,
which computes to
1.606691524"

Students in Fall 2013 did the above, edited Wikipedia to reflect this
fact. You should have been there. It was awesome.

https://piazza.com/class/hk699o5xy661jj?cid=239
https://piazza.com/class/hk699o5xy661jj?cid=242


Summary of Binary Heaps

Op Worst Case Avg Case
findMin() O(1) O(1)
insert(x) O(logN) O(1)
deleteMin() O(logN) O(logN)

I Notice: No get(x) method or remove(x) methods
I These would involve searching the whole binary heap/priority

queue if they did existed: O(N)


