CS 310: Memory Hierarchy and B-Trees

Chris Kauffman

Week 14-1

Matrix Sum

Given an M by N matrix X , sum its elements

- M rows, N columns

```
Sum R
given X, M, N
sum = 0
for i=0 to M-1{
    for j=0 to N-1 {
    sum += X[i][j]
    }
}
```

```
Sum C
given X, M, N
sum = 0
for j=0 to N-1{
    for i=0 to M-1 {
        sum += X[i][j]
    }
}
```

- What's the difference?
- What's the complexity of each?
- Should the execution speed be different?

How does a CPU work?

CPU: Sees a load instruction
500: 1w \$t1, \$t4
504: lw \$t2, 4(\$t4)
508: add \$t3, \$t1, \$t2
Load a word of memory

- Load value at address in register t4 into register t1
- ex: t4 contains the memory address 1024 , integer 7 is there

Client/Server model

- CPU: requester
- Memory subsystem: provider
- Like you asking for a specific web page
- Just viewed it a minute ago (fast)
- GMU web site (medium)
- Philippines hosted site (slow)

NUMA

When analyzing code, usually assume uniform memory access

- Same time to move any byte/word to a CPU register

Real world: non-uniform memory access

- Some memory locations are "farther" away

The memory hierarchy

- Presents a uniform memory access interface
- Tries hard to provide it
- Fails

The Memory Pyramid

- Simplified Computer Memory Hierarchy

Illustration: Ryan J. Leng

Source Article

Numbers Everyone Should Know

Edited Excerpt of Jeff Dean's talk on data centers.

Reference	Time	Analogy
Register	-	Your brain
L1 cache reference	0.5 ns	Your desk
L2 cache reference	7 ns	Neighbor's Desk
Main memory reference	100 ns	This Room
Disk seek	$10,000,000 \mathrm{~ns}$	Salt Lake City

Does Big-O analysis capture these effects?

What's a Cache

500: 1w \$t1, \$t4
t4 contains address 1024, lw moves word at 1024 into register t1 Side-effect

- Memory addresses "around" 1024 are loaded into cache
- Probably something like addresses 1024 to 2047 (1K) end up in L1 cache
- Referred to as a cache line
- Subsequent accesses to $1028,1032, \ldots 2044$ will happen fast

Cache is a limited resource

- Putting one line in cache overwrites another line
- Later load address 5120, 1024-2047 evicted from cache

Cache Affects Performance

As measured by hardware counters using linux's perf on
model name : Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz cache size : 6144 KB
with
> perf stat \$opts java MatrixSums 80004000 row
> perf stat \$opts java MatrixSums 80004000 col

Measurement	row	col
cycles	$3,507,364,715$	$5,605,621,966$
instructions	$2,353,887,029$	$2,543,165,478$
L1-dcache-loads	$527,694,054$	$561,540,169$
L1-dcache-load-misses	$25,638,014$	$122,663,199$
Runtime (seconds)	1.001	1.620

L1 data cache load misses

- Row: $25 \mathrm{~K} / 548 \mathrm{~K}=4 \%$ main memory access
- Col: $122 / 585 \mathrm{~K}=20 \%$ main memory access

Cache and Main Memory

Concern

Binary search trees don't focus on exploiting cache very much

- Left/Right in cache $1-7 \mathrm{~ns}$ access time
- Left/Right not in cache, 100 ns trip to main memory
- Could do 100 operations during that trip (!)

Problem

- Left/Right not in main memory, $10,000,000$ ns trip to disk
- CPU gets a siesta, user gets irate
- When would this happen?

Big Data

- Machine named HAL has
- 1mb cache
- 8gb memory
- Database DB has
- record size $2^{11} \mathrm{~b}$ (2048 bytes, 2kb)
- 2^{24} records (16 mb)
- Size: $2^{24} * 2^{11} b=2^{35} b(32 \mathrm{gb})$
- Find Record R in DB stored on HAL

Bad implementation
Store DB randomly, search sequentially for R

- Is the DB any bigger this way?

A bit better
Store DB as a balanced BST, binary searches for R

- How big is the new DB with left/right pointers?
- How deep is the tree?
- How many disk accesses may be needed?

Deep Trees

- Database DB has
- record size $2^{11} \mathrm{~b}$ (2048 bytes, 2 kb)
- 2^{24} records (16 mb)
- Size: $2^{24} \times 2^{11} b=2^{35} b(32 g b)$
- Find Record Z in Y stored on X
- Store DB in single BST, use binary search for R

Answers

- How big is the new DB with left/right pointers?
- 2^{24} records
- 2×8 bointers per record for left/right $=$ 16 b per record $=2^{4} \mathrm{~b}$
- $2^{24} \times 2^{4}=2^{28} b=$ 256 mb
- Small compared to 32 gb (0.7\%)
- How deep is the tree?
- 2^{24} records, $\log _{2}$, expect 24 deep
- How many disk accesses may be needed?
- Very unlucky - 24 accesses
- Each costs 10,000,000 ns
- Could have done 240,000,000 instructions

Tree + Array $=$ B-Tree

Large DB's use sequential ordering with gaps, tree index

- Sequential chunks allow array-searching in cache
- Whole index doesn't fit in fast memory, but chunks do
- Do as much work as possible in fast memory to avoid slow disk access
B-trees exploit this to reduce tree depth / disk accesses

Internal Nodes

- Branch more than 2 ways
- Store multiple keys
- Keys in a sorted array
- Make sure they fit in cache
- Use a sequential search to find branch
- Always half full to full
- root exception

Leaves

- Data is only at the leaves
- Hold multiple sorted data
- Have maximum data capacity
- Optimized to disk block size
- Always half full to full

B-Trees

Weiss and Knuth: Order 5 B-tree

- Terminology is not standardized

The origin of "B-tree" has never been explained by the authors. As we shall see, "balanced," "broad," or "bushy" might apply. Others suggest that the " B " stands for Boeing. Because of his contributions, however, it seems appropriate to think of B-trees as "Bayer"-trees.

- Wikipedia: B-tree

B-Trees Ops

Original

Insert 57

B-Trees Ops

Inserted 57

Insert 55

B-Trees Ops

Inserted 55

Insert 40

B-Trees Ops

Inserted 40

Delete 99

General Strategies

ADD () quasi-code

ADD (x, bt)
find right leaf in bt
if space in leaf add x to leaf
else
if parent has room new leaf split data add x to leaf else
recurse up split internal
new leaves
split data
back down to add x

REMOVE() quasi-code

REMOVE (x, bt)
find leaf with x
remove x
if leaf < 1/2 full
merge with neighbor leaf steal leaves if needed recurse up to adjust

B-tree Take-home

- Multi-way trees
- If order-k nodes are all $1 / 2$ full $\rightarrow O\left(\log _{k} N\right)$ height
- Hybrid of array/tree
- Good for data that doesn't fit in memory
- Large Databases
- Filesystems
- Sensitive to memory hierarchy
- Simple idea, complex implementation
- Many variations on the idea
- No Weiss B-trees: too complex

