
CS 310: Memory Hierarchy and B-Trees

Chris Kauffman

Week 14-1

Matrix Sum
Given an M by N matrix X, sum its elements

I M rows, N columns

Sum R

given X, M, N
sum = 0
for i=0 to M-1{

for j=0 to N-1 {
sum += X[i][j]

}
}

Sum C

given X, M, N
sum = 0
for j=0 to N-1{

for i=0 to M-1 {
sum += X[i][j]

}
}

I What’s the difference?
I What’s the complexity of each?
I Should the execution speed be different?

How does a CPU work?

CPU: Sees a load instruction

500: lw $t1, $t4
504: lw $t2, 4($t4)
508: add $t3, $t1, $t2

Load a word of memory
I Load value at address in register t4 into register t1
I ex: t4 contains the memory address 1024, integer 7 is there

Client/Server model
I CPU: requester
I Memory subsystem: provider
I Like you asking for a specific web page

I Just viewed it a minute ago (fast)
I GMU web site (medium)
I Philippines hosted site (slow)

NUMA

When analyzing code, usually assume uniform memory access
I Same time to move any byte/word to a CPU register

Real world: non-uniform memory access
I Some memory locations are "farther" away

The memory hierarchy
I Presents a uniform memory access interface
I Tries hard to provide it
I Fails

The Memory Pyramid

Source Article

http://www.bit-tech.net/hardware/memory/2007/11/15/the_secrets_of_pc_memory_part_1/3

Numbers Everyone Should Know

Edited Excerpt of Jeff Dean’s talk on data centers.

Reference Time Analogy
Register - Your brain
L1 cache reference 0.5 ns Your desk
L2 cache reference 7 ns Neighbor’s Desk
Main memory reference 100 ns This Room
Disk seek 10,000,000 ns Salt Lake City

Does Big-O analysis capture these effects?

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/people/jeff/stanford-295-talk.pdf

What’s a Cache

500: lw $t1, $t4

t4 contains address 1024, lw moves word at 1024 into register t1
Side-effect

I Memory addresses "around" 1024 are loaded into cache
I Probably something like addresses 1024 to 2047 (1K) end up

in L1 cache
I Referred to as a cache line
I Subsequent accesses to 1028, 1032, . . . 2044 will happen fast

Cache is a limited resource
I Putting one line in cache overwrites another line
I Later load address 5120, 1024-2047 evicted from cache

Cache Affects Performance
As measured by hardware counters using linux’s perf on

model name : Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz
cache size : 6144 KB

with

> perf stat $opts java MatrixSums 8000 4000 row
> perf stat $opts java MatrixSums 8000 4000 col

Measurement row col
cycles 3,507,364,715 5,605,621,966
instructions 2,353,887,029 2,543,165,478
L1-dcache-loads 527,694,054 561,540,169
L1-dcache-load-misses 25,638,014 122,663,199
Runtime (seconds) 1.001 1.620

L1 data cache load misses
I Row: 25K/548K = 4% main memory access
I Col: 122/585K = 20% main memory access

Cache and Main Memory

Concern
Binary search trees don’t focus on exploiting cache very much

I Left/Right in cache 1-7ns access time
I Left/Right not in cache, 100ns trip to main memory
I Could do 100 operations during that trip (!)

Problem
I Left/Right not in main memory, 10,000,000 ns trip to disk

I CPU gets a siesta, user gets irate

I When would this happen?

Big Data
I Machine named HAL has

I 1mb cache
I 8gb memory

I Database DB has
I record size 211 b (2048 bytes, 2kb)
I 224 records (16 mb)
I Size: 224 * 211 b = 235 b (32gb)

I Find Record R in DB stored on HAL

Bad implementation
Store DB randomly, search
sequentially for R

I Is the DB any bigger
this way?

A bit better
Store DB as a balanced BST, binary
searches for R

I How big is the new DB with
left/right pointers?

I How deep is the tree?
I How many disk accesses may be

needed?

Deep Trees
I Database DB has

I record size 211 b (2048 bytes, 2kb)
I 224 records (16 mb)
I Size: 224 × 211 b = 235 b (32gb)

I Find Record Z in Y stored on X
I Store DB in single BST, use binary search for R

Answers
I How big is the new DB with

left/right pointers?
I 224 records
I 2 × 8b pointers per

record for left/right =
16b per record = 24 b

I 224 × 24 = 228 b =
256mb

I Small compared to 32gb
(0.7%)

I How deep is the tree?
I 224 records, log2, expect

24 deep
I How many disk accesses may

be needed?
I Very unlucky - 24 accesses
I Each costs 10,000,000 ns
I Could have done

240,000,000 instructions

Tree + Array = B-Tree
Large DB’s use sequential ordering with gaps, tree index

I Sequential chunks allow array-searching in cache
I Whole index doesn’t fit in fast memory, but chunks do
I Do as much work as possible in fast memory to avoid slow disk

access
B-trees exploit this to reduce tree depth / disk accesses

Internal Nodes
I Branch more than 2 ways
I Store multiple keys
I Keys in a sorted array
I Make sure they fit in cache
I Use a sequential search to

find branch
I Always half full to full

I root exception

Leaves
I Data is only at the leaves
I Hold multiple sorted data
I Have maximum data

capacity
I Optimized to disk block size
I Always half full to full

B-Trees
Weiss and Knuth: Order 5 B-tree

I Terminology is not standardized

The origin of "B-tree" has never been explained by the
authors. As we shall see, "balanced," "broad," or
"bushy" might apply. Others suggest that the "B" stands
for Boeing. Because of his contributions, however, it
seems appropriate to think of B-trees as "Bayer"-trees.
– Wikipedia: B-tree

http://en.wikipedia.org/wiki/B-tree#Etymology_unknown

B-Trees Ops
Original

Insert 57

B-Trees Ops
Inserted 57

Insert 55

B-Trees Ops
Inserted 55

Insert 40

B-Trees Ops

Inserted 40

Delete 99

General Strategies
ADD() quasi-code

ADD(x,bt)
find right leaf in bt
if space in leaf

add x to leaf
else

if parent has room
new leaf
split data
add x to leaf

else
recurse up
split internal
new leaves
split data
back down to add x

REMOVE() quasi-code

REMOVE(x,bt)
find leaf with x
remove x

if leaf < 1/2 full
merge with neighbor leaf
steal leaves if needed
recurse up to adjust

B-tree Take-home

I Multi-way trees
I If order-k nodes are all 1/2 full → O(logk N) height
I Hybrid of array/tree
I Good for data that doesn’t fit in memory

I Large Databases
I Filesystems
I Sensitive to memory hierarchy

I Simple idea, complex implementation
I Many variations on the idea
I No Weiss B-trees: too complex

