
CS 310: Red-Black trees

Chris Kauffman

Week 14-1



History

In a 1978 paper "A Dichromatic Framework for Balanced
Trees", Leonidas J. Guibas and Robert Sedgewick derived
red-black tree from symmetric binary B-tree. The color
"red" was chosen because it was the best-looking color
produced by the color laser printer. . .

I Wikip: Red-black tree

https://en.wikipedia.org/wiki/Red%E2%80%93black_tree


Red-Black Tree

A Binary Search Tree with 4
additional properties
1. Every node is red or black
2. The root is black
3. If a node is red, its children

are black
4. Every path from root to

null has the same number
of black nodes

Frequently drawn/reasoned about
with null colored black



A Sample RB Tree (?)

I Is this a red-black tree?
I Discounting color, is it an AVL tree?



Immediate Implications for Height Difference

Red-black properties

1. Every node is red or black
2. The root is black
3. If a node is red, its children are black
4. Every path from root to null has the same number of black

nodes

Question
From root to a null in the left subtree of a red-black tree, 8 black
nodes are crossed (don’t count the null at bottom)

I What is the max/min height of the left subtree?
I What is the max/min height of the right subtree?
I What is the max/min height of the whole tree?
I What is the maximum difference between left/right subtrees?



Logarithmic Height - Check

Lemma: A subtree rooted at node v has at least 2bh(v) − 1 internal
nodes where bh(v) is the number of black nodes from v to a leaf.
Proof: By induction on height and bh(v).
Corollary: Height of tree height(t) is at worst 2× bh(t), so that

size(t) ≥ 2
height(t)

2 − 1

and thus
2 log2(size(t)) ≥ height(t)

As usual, Wikipedia has good info (in this case more detail than
Weiss).

http://en.wikipedia.org/wiki/Red_black_tree#Proof_of_asymptotic_bounds


Preserving Red Black Properties
Basics

I Insert data as in standard binary trees as a node initially
I If two consecutive reds result, fix it
I Gets complicated fast

Insertion Strategy 1: Down-Up (bottom-up)

I Implement recursively
I Insert red at a leaf
I Easy for black parents
I Trouble is with red parents
I Unwind back up fixing any red-red occurrences
I Fixes can be done with combination of recoloring and

single/double rotations
I Lots of cases



Examples: Leaves Easy

I Insert 25 and 68: black parent, easy



Examples: Rotate and Recolor

Insert 3 red
I right rotation at 10, recolor 5 black 10 red

Why not skip rotation, recolor 3 red 5 black 10 red ?
I INCORRECT: Problem with black null child of 10



Examples: Uncles Matter

Insert 82 red
I Recolor parent 80 black
I Recolor grandparent 85 red
I Recolor uncle 90 black



Problems with Red Subtree Roots

If a fix (recolor+rotation) makes a subtree root red, then we may
have created two consecutive red nodes

I Insertion parent was red
I Insertion grandparent must be black
I New root is at grandparent position
I Insertion great-grandparent may be red

If this happens
I Must detect and percolate up performing additional fixes
I Can always change the root to black for a final fix
I Strategy 1 (recursive insert) requires downward pass to insert,

upward pass to fix via rotation/recoloring



Examples: Must Percolate Fixes Up

Insert 45 red
I Recoloring alone won’t work
I Must also rotate right 70
I Lots of recoloring also but involves trip back up the tree



Insertion Strategy 2: Down only (top-down insertion)

I During single down pass, black parent w/ 2 red children color
flips (red parent 2 black children), rotate if needed

I Example case above: recognize for node X, Red Uncle S may
cause problems for lower insertion

I Rotate and recolor; preserve black path count, ensure X does
not have a Red Uncle



Insertion Strategy 2: Down only (top-down insertion)

Fix: Guarantee Uncle is not red
I On the way down: check black node X
I If both children are red, change children to black and change

X to red
I If parent of X is red, use a single/double rotation and

recoloring to fix, then continue down
I Ensures after red insertion, only recoloring + single/double

rotation is required, no percolation back up



Example of Strategy 2: Down Only

Insert 45 At 50 Red, 2 Black Children,
Color Flip

50 & 60 Red: Rotate Right 70
+ Recolor

Ensures Insert 45 Red works



Code

weiss/nonstandard/RedBlackTree.java
I Down only insertion
I 300ish lines of code
I Deletion not implemented (a fun activity if you’re bored)



AVL Tree v Red Black Tree

AVL
I (+) Conceptually simpler
I (+) Stricter height bound:

fast lookup
I (-) Stricter height bound:

more rotations on
insert/delete

I (-) Simplest implementation
is recursive: down/up

Red Black
I (-) More details/cases
I (-) Implementation is

nontrivial
I (-) Looser height bound:

slower lookup
I (+) Looser height bound:

faster insert/delete
I (+) Tricks can yield iterative

down-only implementation



Practical Use of Trees

I Balanced BSTs keep contents in order and provided guarantee
O(logN) find/add/remove

I Reproduce them in sorted order via an in-order traversal
I In Java, get a tree.iterator() and walk it through data
I Can also visit sorted subsets of data by locating a record in

O(logN) time then proceeding with an in-order traversal from
there.

I In Java, TreeSet<T> provides tailSet(T start) to get a
subset "view" of the the set



Example: Subsets of Mario Tree

I Consider attempting to locate all records which start with the
letter "P"

I Naive strategy?
I Computationally efficient strategy?



Code using tailSet(x)
Welcome to DrJava.
> import java.util.*;
> TreeSet<String> t = new TreeSet<String>();
> String [] data = {"Mario","Goomba",...};
> for(String s : data){ t.add(s); }
> t // All of t
[Bob-omb, Bowser, Chain Chomp, Donkey Kong, Goomba, Koopa, Luigi,
Mario, Peach, Pokey, Princess, Thwomp, Toad, Wario]

> t.tailSet("P") // A "view" of the set starting from P
[Peach, Pokey, Princess, Thwomp, Toad, Wario]

> Iterator<String> it = t.tailSet("P").iterator();
> it.next()
"Peach" // Starts with P
> it.next()
"Pokey" // Starts with P
> it.next()
"Princess" // Starts with P
> it.next()
"Thwomp" // No more P records


