
CS 310: Maps and Sets

Chris Kauffman

Week 9-1

Logistics

Goals Today

I HW2 Discussion
I Maps and Sets

HW2 Discussion
I Milestones due Thu 7/6
I Discuss AdditiveList
I Iterator Implementation
I O(1) Undo/Redo

Reading from Weiss

I Today: Ch 6.7-9 Maps &
Sets

I Upcoming: Trees
I Ch 18 Trees
I Ch 19 Binary Search Trees
I Weiss Ch. 7 Recursion

Operation Complexities (Speed)

I add(x): put x in the DS
I removeLast(): get rid of "last" item
I remove(x): take x out of DS
I contains(x): is x in DS?

| | add(x) | removeLast() | remove(x) | contains(x) |
|--------------+----------+--------------+-----------+-------------|
ArrayList	O(1)	O(1)	O(n)	O(n)
LinkedList	O(1)	O(1)	O(n)	O(n)
Hash Table	O(1)	X	O(1)	O(1)

This table is slightly misleading
I Careful of semantics of each operation
I Presence/lack of sorting property
I Set/Map distinctions
I What about space complexity of each?

Idea and Implementation

List
I List Idea: Ordered collection, accessible by numeric index:

l.get(i)
I List Idea is formalized in Java’s interface List
I ArrayLists and LinkedLists are both implementation of

the List idea with different operational tradeoffs (describe)
I Could one implement a List with a hash table: HashList?

Set and Map

I Useful ideas: Set of unique items, Mapping of keys to values
I Can implement set or map with a variety of data structures

I Arrays, Linked Lists, Hash Tables, Trees

Map and Set

Set: HashSet and TreeSet

I Collection of distinct objects
I Supports add(x),

remove(x), contains(x),
sometimes get(x)

I x is either in the set or not
in the set

Map: HashMap and TreeMap

I (key,value) pairs
I Each key has exactly one

value
I Insert value into a map

according to its key
I Same key maps to same

"place" in the data structure
I Supports put(k,v),

get(k), remove(k),
contains(k)

Examples of Sets and Maps
A data type

class Student{
String name;
int gNumber;

}

A set of students

Contents
{Kyle, 1234}
{Stan, 4321}
{Eric, 2486}
{Kenny, 1313}
{Stan, 1357}

A map of IDs to students

Key Value
1234 -> {Kyle, 1234}
4321 -> {Stan, 4321}
2486 -> {Eric, 2486}
1313 -> {Kenny, 1313}
1357 -> {Stan, 1357}

A map of Students to Majors

Key Value
{Kyle, 1234} -> World Religions
{Stan, 4321} -> Geology
{Eric, 2486} -> Nutrition
{Kenny, 1313} -> Mortuary Sciences
{Stan, 1357} -> Genetics/Cloning

Questionable Sets and Maps
A set of majors?

Contents:
World Religions
Geology
Nutrition
Mortuary Sciences
Genetics/Cloning

A set of names?

Contents:
Kyle
Stan
Eric
Kenny
Stan

A map of IDs to names?

Key Value
1234 -> Kyle
4321 -> Stan
2486 -> Eric
1313 -> Kenny
1357 -> Stan

A map of names to IDs?

Key Value
Kyle -> 1234
Stan -> 4321
Eric -> 2486
Kenny -> 1313
Stan -> 1357

Key Value
{Kyle, 1234} -> World Religions
{Stan, 4321} -> Geology
{Eric, 2486} -> Nutrition
{Kenny, 1313} -> Mortuary Sciences
{Stan, 1357} -> Genetics/Cloning

Array Analogy

Arrays and ArrayList are like a Map where
I Keys are integers: store at array index
I Values are the objects at those indices

A Set of Integers is naturally represented as an array of booleans
I Represent sets of Integers 0 to 10
I Use arrays of size 11
I The set {1, 8, 9} is the array

boolean set1[] = new boolean[]{
false,true,false,false,false,false,
// 1
false,false,true,true,false
// 8 9

};

More efficient with BitSet if you’re willing. . .

General Observations

Set
I A set must guarantee uniqueness of elements
I Typical approach is during add(x), check contains(x) and

don’t add duplicates but there are other approaches
I Efficient implementation of contains(x) and get(x)

becomes important for sets

Map

I The collection so keys is a set - each key must be unique
I contains(k)/get(k) important - make them efficient
I Collection of values is not unique
I Usually not efficient to look up whether a given value is present
I Collection of (key,value) pairs is unique due to keys being

unique

General Implementations

How would you implement a Set<T>?
I Using an ArrayList?
I Using an LinkedList?
I Using a Hash Table?

How would you implement a Map<K,V>?
I Using an ArrayList?
I Using an LinkedList?
I Using a Hash Table?

General Solutions

Set from a Array or Linked List

I Guarantee items in list are
unique by searching

I Could sort array for efficient
lookup via binary search

I Still looking at O(N)
operations somewhere

Set from Hash Table
I Good fit: O(1) lookup via

hash codes
I Keep load low and your in

good shape

Map from Array or Linked List

I Keep track of Pairs of
(Key,Value)

I Lookup is based on only Key
I Can sort based on Key part

only
I O(N) operations somewhere

Map based on Hash Table

I Keep track of pairs of
(Key,Value)

I Hash only the Key part
I O(1) lookups if load is low

Have Set, Build Map

Q: If I have Set, how would I build Map?

Given: SimpleSet

I Collection of distinct objects
I Uniqueness determined by

equals() method
I Operations add(x),

get(x), remove(x),
contains(x)

I SimpleSet implementation
may be based on arrays,
hash tables, trees, linked
lists. . . you don’t know

Build: SimpleMap

I Set of (key,value) pairs
I Compare pairs only on

whether their key is equal
(a,x) == (a,x)
(a,x) == (a,y)
(a,x) != (b,y)
(a,x) != (b,x)

I Use the set to ensure no
redundant keys enter

I Implement put(k,v),
get(k), remove(k),
contains(k)

Trick 1: Use an internal class

public class MapFromSet<K, V>{
// Trick: Use a nested class
// Class to carry around (key,val) pairs
public static class KeyVal<K, V>{

public K key; public V value;
public KeyVal(K key, V value){

this.key = key; this.value = value;
}
// Required for any set to work
// Compare only based on key
public boolean equals(Object o);
// Required for HashSet to work right
public int hashCode();
// Required for TreeSet to work
public int compareTo(KeyVal<K,V> kv);

}

Trick 2: Use a set of the key/val pairs
Prototypes

public interface SimpleSet<T> {
boolean contains(T x);
boolean add(T x);
boolean remove(T x);
T get(T x);

}
public class MapFromSet<K, V>{

// Trick 1: Use internal key/val class
public static class KeyVal<K, V>{...}
// Trick 2: Given a working Set class: use it!
private SimpleSet< KeyVal<K,V> > theSet;

// Implement these using theSet
public MapFromSet();
public void put(K key, V value);
public void remove(K key);
public boolean contains(K key);
public V get(K key);

}

Exercise
Implement the put(),
remove(), contains(), get()
methods

The other Direction: Build a Set from a Map

Given a SimpleMap

I (key,value) pairs
I Each key is unique
I Insert value into a map

according to its key
I Same key maps to same

"place" in the data structure
I Supports put(k,v),

remove(k), contains(k)

Build a SimpleSet

I Use an internal SimpleMap
I Implement SimpleSet

methods
I void add(T x)
I void remove(T x)
I T get(T x)
I boolean contains(T x)

A Great Exam Question

I Tests your use of generics
I Illustrates abstraction skills
I Show you’re a proper software engineer

Java Does it
In Java: Map → Set

I java.util.TreeMap is a red-black tree
I java.util.TreeSet uses a TreeMap
I java.util.HashMap is a separate chained hash table
I java.util.HashSet uses a HashMap

In Weiss: Set → Map

I weiss.util.TreeSet is an AA-tree (another balanced tree)
I weiss.util.TreeMap uses TreeSet
I weiss.util.HashMap uses HashSet

Lesson
I Re-use when it makes sense
I Think hard about when it makes sense to re-use

