
CS 310: Hash Table Collision Resolution

Chris Kauffman

Week 7-1

Logistics

Reading

I Weiss Ch 20: Hash Table
I Weiss Ch 6.7-8: Maps/Sets

Goals Today

I Hash Functions
I Separate Chaining In Hash

Tables

HW 2
I Milestones due Thursday
I Final tests up by Friday

Upcoming

Mon 10/10 No class
Tue 10/11 Hash functions

Hash Tables
Wed 10/12 Midterm review
Mon 10/17 Midterm Exam
Wed 10/19 Hash tables

Maps & Sets

Midterm Next Week Topics to begin reviewing

I Big-O complexity for runtime and space/memory consumption,
analyzing existing code to determine its properties

I ArrayLists, LinkedLists (single and doubly linked),
Stacks/Queues implemented with arrays/linked nodes,
iterators, hash functions, hash tables (separate chaining)

I Appropriate use of these data structures for application settings
I Java generics for data structures

Hash Table Class So Far. . .

So far
I Know: how to use int xhc

= x.hashCode();
I Simple Hash Set with

add(x)/contains(x) has
an array hta

I Put x in hta[] based on xhc

Answer
I What if xhc is out of

bounds in hta?
I Unconditionally set

hta[xhc] to x in add(x)?

class MyHashSet<T>{
T hta[]; int size;
boolean contains(T x){

int xhc = x.hashCode();
// If xhc out of bounds?
xhc = ???;
// Is this okay?
return

x.equals(this.hta[xhc]);
}
void add(T x){

int xhc = x.hashCode();
// If xhc out of bounds?
xhc = ???;
// Is this okay?
this.hta[xhc] = x;
this.size++;

}
}

Getting Hash Codes in Bounds

I hta[] has a fixed size
I The hash code xhc

can be any integer
I Take an absolute

value of xhc if
negative

I Use modulo to get
xhc in bounds

int n = hta.length;
hta[abs(xhc) % n] = x;

Note: For mathy reasons
we’ll briefly discuss, usually
make hash table size n a
prime number

Pragmatic Collision Resolution: Separate Chaining

Motivation
I Put x in table at hta[xhc]
I Problem: What if hta[xhc] is occupied?

Separate Chaining
Most of you recognize this problem can be solved simply

I Internal array contains lists
I Add x to the list at hta[xhc]

public class HashTable<T>{
private List<T> hta[];
...

Separate Chaining: Example

Code

String [] sa1 = new String[]{
"Chris","Sam","Beth","Dan"

};

SeparateChainHS<String> h =
new SeparateChainHS<String>(11);

for(String s : sa1){
h.add(s);

}
print(h.load());
// load = 4 / 11
// 0.36363636363636365

load =
item count
array length

Load = 0.36

Separate Chaining: Example
Code

String [] sa2 = new String[]{
"Chris","Sam","Beth","Dan",
"George","Kevin","Nikil",
"Mark","Dana","Amy","Foo",
"Spike","Jet","Ed"

};

SeparateChainHS<String> h =
new SeparateChainHS<String>(11);

for(String s : sa2){
h.add(s);

}

h.load();
// load = 14 / 11
// 1.2727272727272727

Load = 1.27

Implement Separate Chaining
I A Set has at most one copy of any element (no duplicates)
I Write add/remove/contains for SeparateChainingHS
I What are the time complexities of each method?

public class SeparateChainingHS<T>{
private List<T> hta[];
private int itemCount;

// Constructor, n is initial size of hta[]
public SeparateChainingHS(int n){

this.itemCount = 0;
this.hta = new List<T>[n];
for(int i=0; i<n; i++){

this.hta[i]=new LinkedList<T>();
}

}

public void add(T x); // Add x if not alread present
public void remove(T x); // Remove x if present
public boolean contains(T x); // Return true if x present, false o/w

}

Separate Chaining Viable in Practice

Java’s built-in hash tables use it
I Simple to code
I Reasonably efficient
I java.util.HashSet / HashMap / Hashtable all use

separate chaining

Code shown in Weiss pg 799
I Rolled own linked list
I No remove (write it yourself)
I Part of code distribution

Analyses of methods are influenced by Load

load =
item count
array length

Analysis

add()
add(x) is O(1) assuming adding to a list is O(1)

int xhc = x.hashCode();
List l = hta[abs(xhc) % hta.length];
l.add(x);

remove()/contains()

I Assume fair hash function (distributes well)
I Load is the average number of things in each list in the array.
I remove(x)/contains(x) must potentially look through Load

elements to see if x is present
I Therefore complexity O(Load) = O(itemCount/arraySize)

Alternatives to Separate Chaining

Separate Chaining works well but has some disadvantages

I Requires separate data structure (lists)
I Involves additional level of indirection: elements are two or

three additional memory references away from the hash table
array

I Adding requires memory allocation for nodes/lists

Alternative: Open Address Hashing

I Ban the use of lists in the hash table
I Store element references directly in hash table array
I Why do it this way?
I How can we handle collisions now?

Open Addressing
Basic Design

I Hash table elements stored in array hta (no auxilliary lists)
I Probe a sequence of entries for object

Generic pseudocode for a probe sequence
pos = abs(x.hashCode() % hta.length);
repeat

if hta[pos] is empty
hta[pos] = x
return

else
pos = someplace else

Design Issues

I Obvious next places to look after pos?
I How to indicate an entry is empty?
I Limits?

Linear Probing
Start with normal insertion position pos

int pos = Math.abs(x.hashCode() % hta.length);

Try the following sequence until an empty array element is found

pos, pos+1, pos+2, pos+3, ... pos+i

Process of add(x) in hash table

// General idea of linear probing sequence
pos = Math.abs(x.hashCode() % hta.length);
if hta[pos] empty, put x there
else if hta[(pos+1)] empty, put x there
else if hta[(pos+2)] empty, put x there
...

Write java code for this

// Insert x using linear probe sequence
public void add(T x)

Consequences of Open Address Hashing

With linear probing
I Can add(x) fail? Under what conditions?
I Code for contains(x)?
I How does remove(x) work?

Removal in Open Addressing: Follow Chain

|------+------+-----+-------|
| Item | Code | Pos | Added |
|------+------+-----+-------|
A	5	5	1
B	6	6	2
C	5	7	3
D	7	8	4
E	5	9	5
F	8	10	6
G	11	11	7
H	12	12	8
I	9	13	9
------+------+-----+-------			

I Suppose remove(X) sets position to null
I What are the booleans assigned to?

h.remove(A); boolean b1 = h.contains(C);
h.remove(D); boolean b2 = h.contains(F);
h.remove(E); boolean b3 = h.contains(I);

Avoid Breaking Chains in Removal
I Don’t set removed records to null
I Use place-holders, in Weiss it’s HashSet.HashEntry

private static class HashEntry {
public Object element; // the element
public boolean isActive; // false if marked deleted
public HashEntry(Object e) {

this(e, true);
}
public HashEntry(Object e, boolean i){

element = e;
isActive = i;

}
}

Explore weiss/code/HashSet.java
I remove(x) sets isActive to false
I contains(x) treats slot as filled
I rehash() ignores inactive entries

Load and Linear Probing
Load has a big effect on performance in linear probing

I When Inserting x
I If h[cx] full, cx++ and repeat
I When h is nearly full, scan most of array
I load ≈ 1→ O(n) for add(x)/contains(x)

Theorem
The average number of cells
examined during insertion with
linear probing is

1
2

(
1+

1
(1− load)2

)
Where,

load =
item count
array length

0.0 0.2 0.4 0.6 0.8 1.0

1
5

50
50

0
50

00

load

bu
ck

et
s

ch
ec

ke
d

on
 in

se
rt

Why does this happen?

Primary Clustering
Many keys group together, clusters
degrade performance

I Table size 20
I Filled cells 5-10, 12
I Insert H hashes to 6

I Must put at 11
I Insert I hashes to 10

I Must put at 13

I Hashes from 5-13 have clustered

Quadratic Probing

Try the following sequence until an empty array element is found

pos, pos+1^2, pos+2^2, pos+3^2, ... pos+i^2

I Primary clustering fixed: not putting in adjacent cells
I add works up to load = 0.5

I Weiss Theorem 20.4, pg 786

I Can be done efficiently (Weiss pg 787)
I Complexity Not fully understood

I No known relation of load to average cells searched
I Interesting open research problem

Probe Sequence Differences
> Math.abs("Marylee".hashCode()) % 11
5

Linear Probe Quadratic Probe

> Math.abs("Barb".hashCode()) % 11
5 --> Where?

Rehashing

High load → make a bigger array, rehash, get small load
I Akin to expanding backing array in ArrayList
I Allocate a new larger array
I Copy over all active items to the new array
I Array should have prime number size
I O(n) to rehash

Hash Tables in Java

java.util.HashMap Map built from hashing
java.util.HashSet Set built from hashing
java.util.Hashtable Map built from hashing, earlier class,

synchronized for multithread apps

Hash Take-Home

I Provide O(1) add/remove/contains
I Separate chaining is a pragmatic solution

I Hash buckets have lists
I Open Address Hashing

I Look in a sequence of buckets for an object
I Linear probing is one way to do open address hashing

I Simple to implement: look in adjacent buckets
I Performance suffers load approaches 1
I Primary clustering hurts performance

I Quadratic probing is another way to do open address hashing
I Prevents primary clustering
I Must keep hash half-empty to guarantee successful add
I Not fully understood mathematically

Hash Tables are another Container

Containers
I Like arrays, linked lists, trees, hash tables
I Have add(x), remove(x), contains(x) methods

add(x) put x in the DS
removeLast() get rid of "last" item
remove(x) take x out of DS

contains(x) is x in DS?

Speed Comparisons

I Speeds for array or ArrayList?
I Speeds for LinkedList?
I Speeds for hash table?

Operation Complexities (Speed)

I add(x): put x in the DS
I removeLast(): get rid of "last" item
I remove(x): take x out of DS
I contains(x): is x in DS?

| | add(x) | removeLast() | remove(x) | contains(x) |
|--------------+----------+--------------+-----------+-------------|
ArrayList	O(1)	O(1)	O(n)	O(n)
LinkedList	O(1)	O(1)	O(n)	O(n)
Hash Table	O(1)	X	O(1)	O(1)

This table is slightly misleading
I Careful of semantics of each operation
I Presence/lack of sorting property
I Set/Map distinctions
I What about space complexity of each?

