
CS 310: Hashing Basics and Hash Functions

Chris Kauffman

Week 6-1

Logistics

HW1 Final due Saturday

I Discuss setFill(x) O(1)
implementation

I Reminder: ANALYSIS.txt
and efficiency of expansion

I Questions?

Midterm Next Week
I Review Tue 6/27 2nd half
I Midterm Thu 6/29 1st half
I Lecture to follow midterm

Midterm Subjects to Include

I Big-O, ArrayLists HW1
I Singly and Doubly Linked

Lists, Iterators, Hash Tables

July 4th Holiday and HW2

I No Class Tue 7/4 for Holiday
I HW2 deadlines will be

adjusted back
I Warning: means that no HW

involving lists/iterators will
be due prior to midterm
BUT these are valid midterm
subjects

A Small Problem

I Small office building, 50 offices
I Office numbers 0-49 (how convenient. . .)
I Building owner wants to track which offices are occupied along

with names of occupants
Office 32 Unoccupied
Office 43 CodeSmacker Inc
Office 19 Unoccupied
Office 9 Kauffmoney Corp

I Suggest a standard data structure and how one would
manipulate it

Arrays Rock, except. . .

I Small office building, 50 offices
I Office numbers based on floor

I Floor 1: 101, 102, 103,. . . ,110
I Floor 2: 201, 202, 203,. . . ,210

I Building owner wants to track which are occupied/names of
occupants

Office 402 Unoccupied
Office 503 CodeSmacker Inc
Office 209 Unoccupied
Office 109 Kauffmoney Corp

I Adapt the earlier approach with arrays: difficulties?

How about Reverse Lookup:
I "CodeSmacker Inc" → Office 403
I "Kauffmoney Corp" → Office 109

Hash Tables Surmount this difficulty

I Hash Tables ≈ Dictionaries (Python)
I Also called associative arrays, sometimes maps
I Store objects in an array in a retrievable way
I Involves computing a number for objects to be stored
I Have O(1) add(x)/remove(x) (sort of. . .)

Hash Tables are Simple

Succinctly

I Have x (object) to put in a hash table
I Compute integer xhc from x

(hash code for x computed via a hash function provided by
class of x)

I Put x in array hta at index xhc: hta[xhc] = x;
I x is now in the hash table

Things to consider

1. How do you compute xhc? Where should that code exist?
2. What if xhc is beyond of hta.length?
3. What if hta[xhc] is occupied?

Every Object’s Doin’ it. . . but not well

Every object in java has a hashCode() method

I Why?
I How are hash codes computed by default?
I Official Docs

Override hashCode()

I For your own classes, override default hashCode()
I Compute hash based on the internal data of an object
I Return an integer "representing" the object
I Class is now "hashable"

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#hashCode()

Computing a Hash Code

Hash Code from Hash Function
I An integer computed for an object
I Computed via a function provided by an object:

int hc = thing.hashCode();

Hash Contract
I If x.equals(y) is true, then x.hashCode()==y.hashCode()
I Equal object → Same hash code
I Important: If x.equals(y) is false, hash codes may be

different or the same
I May be x.hashCode()==y.hashCode()
I May be x.hashCode()!=y.hashCode()

I Leads to collisions in a hash table

Goals of a Hash Function

1. Adhere to the Hash Contract
I If x and y are equal, must have same hash code

2. Distribute different objects "fairly" across integers
I If x and y not equal, try to make x.hashCode() different

from y.hashCode()
I Making hash codes different reduces collisions in hash tables

3. Compute x.hashCode() as quickly as possible
I Adding/looking up objects in a hash table requires

computation of an object’s hash code
I Reducing time spent on computing hash code improves

performance

These three goals almost always involve tradeoffs

Discussion: Hash Codes for these Fine Fellows?

public int hashCode()

Ideas for hashCode() implementation of the following things

Fundamental Types

I Integer
I Long
I Character
I Boolean
I Float
I Double

Custom Classes
I class Initials{

char first, last;
}

I class Coord{
int row, col;

}

Recall from last time

I What is the hash contract?
I Can I call x.hashCode() on any object? Why or why not?

What is returned?
I What kind of thing is returned by the hashCode() method?
I How does one implement hashCode() for

I Integer
I Boolean
I Character
I Long
I Double

Hash Codes for 64-bit Primitives
Straight from the Java class library source code

package java.lang;
public final class Double

extends Number implements Comparable<Double>
{

private final double value; // value of the double

// hash code implementation
@Override public int hashCode() {

return Double.hashCode(value);
}
// static helper method
public static int hashCode(double value) {

long bits = doubleToLongBits(value);
return (int)(bits ^ (bits >>> 32));

}
// native (?) helper method
public static native long doubleToLongBits(double value);

}

First Aggregate Example: String.hashCode()
class String {

public int hashCode(){ .. }
Returns a hash code for this string. The hash code for a
String object is computed as

s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
using int arithmetic, where s[i] is the ith character of
the string, n is the length of the string, and ^ indicates
exponentiation.

}

Examples
Welcome to DrJava.
> "a".hashCode() > String s = "Hash!";
97 > s.hashCode()
> "b".hashCode() 69497011
98 > (31*31*31*31)*’H’ + (31*31*31)*’a’ +
> "ab".hashCode() (31*31)*’s’ + (31)*’h’ + ’!’
3105 69497011
> "ba".hashCode()
3135

Consider String.hashCode()

The hash code of a string s is computed as

s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]

using int arithmetic, where s[i] is the ith character of the string,
n is the length of the string, and ^ indicates exponentiation. (The
hash value of the empty string is zero.)

Exercise: Discuss the Following

I Is this what you expected for string?
I Is 31 special?
I Write code for String’s hashCode() method. In Java.
I Complexity of code?
I Optimizations?
I Alternative hash functions for strings?

Polynomial Hash Code Tricks
String uses a polynomial hash code

a0X
n−1 + a1X

n−2 + a2X
n−3 + · · ·+ an−1X

0

31 is X in the above
I 31 is not special
I Early java used 37 instead

A Trick
Can regroup a polynomial of any degree
Example of regrouping degree 3 polynomial

a0X
3 + a1X

2 + a2X
1 + a3

regrouped becomes

(((a0)X + a1)X + a2)X + a3

Implementations

Slow: Original

s[0]*31^(n-1)
+ s[1]*31^(n-2)
+ ...
+ s[n-1]

char s[];
public int hashCode() {

int h = 0, i, n=s.length;
for(i=0; i<n; i++){

h += s[i] * ((int) pow(31,n-i-1));
}
return h;

}

Faster: Exploit Regrouping

(...(((s[0])*31
+ s[1])*31
+ s[2])*31
+ ...)

char s[];
public int hashCode() {

int h = 0, i;
for (i=0; i<s.length; i++){

h = 31 * h + s[i];
}
return h;

}

Examine parens carefully in expression

The Full Implementation uses Caching

Compute once, save for later

class String{
private char[] str; // Chars of string
private int hash; // Default to 0

public int hashCode() {
// Check if the hash has already been computed
if(this.hash!=0 || this.str.length==0){

return this.hash;
}
// Hasn’t been computed, compute and store
for(int i=0; i < this.str.length; i++) {

this.hash = 31 * this.hash + this.str[i];
}
return this.hash;

}
}

Not exactly how java.util.String looks but it’s the general idea

Practice: Hash Codes for these Fine Fellows?

public int hashCode()

Ideas for hashCode() implementation of the following things

Fundamental Types (Done)

I Integer
I Long
I Character
I Boolean
I Float
I Double

Container Types

I Integer []
I Double []
I String []
I ArrayList<T>
I LinkedList<T>
I class Flurb{

int x;
double y;
String s;
int [] a;

}

Example: Flurb Class hashCode()

class Flurb{
int x;
double y;
String s;
int [] a;

public int hashCode(){
int h = 0;
h = h*31 + x;
h = h*31 + (new Double(y)).hashCode();
h = h*31 + s.hashCode();
for(int i=0; i<a.length; i++){

h = h*31 + a[i];
}
return h;

}
}

Basic hashCode() Strategy
Poor man’s strategy: x.toString().hashCode()
More thoroughly . . .

Fundamental Types

I All have a fixed size in bytes
I int has 4 bytes
I Convert bytes of intrinsic to

4 bytes
I If shorter than 4 bytes like

Character, done
I If 8 bytes like Long,Double,

use XOR to reduce 8 to 4
bytes

Container Types

I Use String approach
I Polynomial hash code of

elements
I For each element compute

its hash code
I Update polynomial hash

code
I Treat fields as part of the

sequence

Trivia
Can anyone find two different strings with the same hash code?

Challenge: Universal Hash Function

Write a static hash function
that will take any Object and
compute a valid hash code that
follows the hash rule.

public static
int hashAny(Object o)

Hint: this is possible but really
hard in java, will involve
recursion, and will likely have
pitiful runtime performance.
You’ll need to use the mysterious
Reflection API.

To inspire jealousy: Other
programming languages kindly
define suitable hash functions
automatically for new data types

I Clojure: yes!
I Scala: yes!
I OCaml: yes!
I Java: nope. . .
I Python: nope. . .
I Standard ML: nope. . .
I Julia: nope. . .
I C/C++: well, what do you

think. . .

https://docs.oracle.com/javase/tutorial/reflect/
http://stackoverflow.com/questions/5866720/hashcode-in-case-classes-in-scala

Summary

I Every class has a hashCode() method but should override it
when overriding equals()

I Two equal objects must have the same hashCode() and as
much as possible unequal objects should have differing
hashcodes

I Fundamental types with 32 bits ore less like Integer are their
own hash codes

I Fundamental types with more than 32 bits like Long can use
XOR to combine 4-byte quantities to get a 32-bit hash

I Aggregate data like String often uses polynomial codes to
calculate hash codes which differ when the order of
constituents changes.

I The same approach is used for other containers and custom
classes that need the order of elements reflected in their
hashcodes

Trivia Answers

Two different strings with the same hash code

> "Aa".hashCode()
2112
> "BB".hashCode()
2112
> ’A’+0
65
> ’a’+0
97
> ’B’+0
66
> ’A’*31+’a’
2112
> ’B’*31+’B’
2112

