CS 310: ArrayList Implementation

Chris Kauffman

Week 2-2

Logistics

At Home

» Read Weiss Ch 5: Big-O
» Read Weiss Ch 15: ArrayList implementation

Reminder to DrJava Users

» Consider Using GMU Edition of DrJava
» Download here: https://cs.gmu.edu/ kauffman/drjava/

Goals

» Build an array list

» Analyze its complexity

https://cs.gmu.edu/~kauffman/drjava/

Collections

Java has a nice library of containers, Collections framework
» Interfaces that provide get (), set(), add()
> All have parameterized types: ArrayList<E>, TreeSet<E>

At present, most interested in ArrayList

v

Like arrays but lacking nice [] syntax
Use get () and set() instead
Can add () elements at end (high index)

v

v

v

Demonstrate ArrayList in DrJava

Basic Premise of the Expandable Array

Use an underlying array

public class MyArrayList<T>{

// This almost works
T datal];

» data is a standard
fixed size array

> get()/set() are
array ops

Questions

Adding and Expanding

» Add elements into data

» If/when data runs out of space

1.
2.

>

» What's the notion of size now?

Allocate a new larger array data2
Copy elements from data to
data2

Add new element(s) to data2
Set data to data2

Original array gets garbage
collected

» How much should the array grow on expansion?

» |Is there wasted space? How much?

Create MyArrayList

public class MyArrayList<T>{

}

T data[]; int size;

public MyArrayList();

public int size();

public void add(T x);

public T get(int i);

public void set(int i, T x);
public void insert(int i, T x);

public void remove(int i);

add (x)

If/when data runs out of space

1.

Allocate a new larger array data2

2. Copy from data to data2

3. Add new element(s) to data2
4.
5

Set data to data2

. GC gets the old array

// Holds elements, virtual size
// Initialize fields

// Virtual size of AL

// Add an element to the end

// Retrieve element i

// Replace element i with x

// Insert x at position i, shift
// elements if necessary

// Remove element at position i,
// shift elements to remove gap

Respect My size()
get()/set()/insert () /remove ()
must respect size() which is always
smaller than or equal to data.length;
check for out of bounds access

Examine Results

» Code up versions together quickly
» Simple version: MyArrayList.java in code distrib
» Also included java.util.ArrayList from Java 1.7 source
» May also want to look at Weiss's version in
textbook-source/weiss/util/ArrayList.java
Complexity

What are the complexities for methods like
> set(i,x) and get(i)
» insert(i,x) and remove(i,x)

» add(x) : this is the big one

Limits of Types

Unfortunately, java type system has some limits.

new T[10] Not Allowed Instead: Object[] + Caste
public class MyArrayList<T> { public class MyArrayList<T> {
private T [] data; private T datal];
public MyArrayList(){ public MyArrayList(){
this.data=new T[10]; // Grrrr this.data=(T[]) new Object[10];
} }
public T get(int i){ public T get(int i){
this.rangeCheck(i); this.rangeCheck(i);
return this.data[il; return this.datali];
} }

} }

Unsafe Operations in MyArrayList

lila [wO01-2-1-codel’ javac MyArrayList.java
Note: MyArrayList.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

lila [wO01-2-1-codel’, javac -Xlint:unchecked MyArrayList.java
MyArraylList.java:77: warning: [unchecked] unchecked cast
found : java.lang.Object[]
required: T[]

this.data = (T[]) new Object[10];

1 warning

Unsafe Operations

Suppress Warnings
Offending code is

private T [] data;

public MyArrayList(){
this.data=(T[]) new Object[10];
}

» |t is unsafe, but so is fire.

» Tell the compiler to shut up

// 1 know what I’m doing
@SuppressWarnings ("unchecked")
public MyArrayList(){

this.data=(T[]) new Object[10];
}

Alternative:
This version uses casting in
get O

public class MyArrayList<T> {
Object [] data;
public MyArrayList(){
this.data =new Object[10];
}
@SuppressWarnings ("unchecked")
public T get(int i){
this.rangeCheck(i);
return (T) this.datal[i];
}
}

Also needed anywhere else type T
stuff is returned so less preferred:
more @SuppressWarnings

HW and Unsafe Operations

» Proper use of generics creates good compile-time type
checking

» Rarely is casting required; ArrayList implementation is one
such exception
» HW1 is NOT such a case
» Should not need to caste anything

» Should not need to use @SuppressWarnings
» Doing either may result in penalties

Warmup: Finish methods for MyArrayList

public class MyArrayList<T>{
T datall; int size;
public MyArrayList();
public int size();
public T get(int i);
public void add(T x);

// FINISH THESE
public void set(int i, T x);

public void insert(int i, T x);

public void remove(int i);

/7
/7
//
/7
/7

/7
//
/7
/7
//

Holds elements, virtual size
Initialize fields

Virtual size of AL

Retrieve element i

Add an element to the end

Replace element i with x
Insert x at position i, shift
elements if necessary

Remove element at positiomn i,
shift elements to remove gap

» Three methods of MyArrayList remain - finish them

» Note common patterns that should be factored into helpers
(e.g. expansion, bounds checking)

» Note: al.insert(i,x) is called al.add(i,x) in

java.util.ArraylList

Exercise: ArrayList Complexities

» ArrayList of with N elements
» Time/Space Complexities of methods
» Worst-case or Average/Amoritzied

Worst Average Worst Average

Operation Method Runtime Runtime Space Space
Size() al.size()
Get(i) al.get (i)
Set(i,x) al.set(i,x)

Add(x) al.add(x)
Insert(i,x) al.add(i,x)
Remove(i) al.remove(i)

» What is the space complexity of an ArrayList with N
elements?

» |s that a tight bound?

Expanding with Magic Numbers

» Size increase when expansion is required is interesting

» Can't be constant: increase size by 1, or 2, or 10 will not give
good complexity

» Standard Java ArrayList increases to 3/2%0ldSize+1

» Chosen based on engineering experience rather than theory,
can use bit shifts to compute it fast

» Default ArrayList size is 10

» Magic Numbers: 3/2 and 10, magic because there is no good
reason for them

Average/Amortized Complexity

» Worst case complexity for arrayList.add(x) is O(N) when
expansion is required

» But expansion happens rarely if size increase by 150% during
expansion

» Over many add operations, the average add(x) takes O(1)
time complexity

» Amortized Analysis: sort of like average case (definition is
close enough for this class)

