CS 310: Order Notation (aka Big-O and friends)

Chris Kauffman

Week 1-2

Logistics

At Home

- Read Weiss Ch 1-4: Java Review
- Read Weiss Ch 5: Big-O
- Get your java environment set up
- Compile/Run code for Max Subarray problem form first lecture

Goals

- Finish up Course Mechanics
- Basic understanding of Big O and friends

How Fast/Big?

Algorithmic time/space complexity depend on problem size

- Often have some input parameter like n or N or (M, N) which indicates problem size
- Talk about time and space complexity as functions of those parameters
- Example: Two algorithms to find the maximum element for an input array of size N,
- One algorithm finds the maximum element using $5 * N+3$ operations
- Another finds the max element in $N^{2}+2 N+7$ operations.
- Example: Two algorithms solve the Max Sub Array problem for an input array of size N,
- Using 7 units of memory in addition to the input array
- Using an additional $9+(N \times(N+1)) / 2$ units of memory
- Big-O notation: bounding how fast functions grow based on input

It's Show Time!

Not The Big O

Just Big 0
$T(n)$ is $O(F(n))$ if there are positive constants c and n_{0} such that

- When $n \geq n_{0}$
- $T(n) \leq c F(n)$

Bottom line:

- If $T(n)$ is $O(F(n))$
- Then $F(n)$ grows as fast or faster than $T(n)$

Show It

Show

$$
f(n)=2 n^{2}+3 n+2 \text { is } O\left(n^{3}\right)
$$

- Pick $c=0.5$ and $n_{0}=6$

n	$f(n)$	$0.5 n^{3}$
0	2	0
1	7	0
2	16	4
3	29	13
4	46	32
5	67	62
6	92	108
7	121	171

$$
\text { Function }-0.5^{*} n^{\wedge} 3 \rightarrow 2^{\star} n^{\wedge} 2+3^{\star} n+2
$$

How about the opposite? Show

$$
g(n)=n^{3} \text { is } O\left(2 n^{2}+3 n+2\right)
$$

Basic Rules

- Constant additions disappear
- $N+5$ is $O(N)$
- Constant multiples disappear
- $0.5 N+2 N+7$ is $O(N)$
- Non-constant multiples multiply:
- Doing a constant operation 2 N times is $O(N)$
- Doing a $O(N)$ operation $N / 2$ times is $O\left(N^{2}\right)$
- Need space for half an array with N elements is $O(N)$ space overhead
- Function calls are not free (including library calls)
- Call a function which performs 10 operations is $O(1)$
- Call a function which performs $N / 3$ operations is $O(N)$
- Call a function which copies object of size N takes $O(N)$ time and uses $O(N)$ space

Bounding Functions

- Big O: Upper bounded by ...
- $2 n^{2}+3 n+2$ is $O\left(n^{3}\right)$ and $O\left(2^{n}\right)$ and $O\left(n^{2}\right)$
- Big Omega: Lower bounded by ...
- $2 n^{2}+3 n+2$ is $\Omega(n)$ and $\Omega(\log (n))$ and $\Omega\left(n^{2}\right)$
- Big Theta: Upper and Lower bounded by
- $2 n^{2}+3 n+2$ is $\Theta\left(n^{2}\right)$
- Little O: Upper bounded by but not lower bounded by...
- $2 n^{2}+3 n+2$ is $o\left(n^{3}\right)$

Growth Ordering of Some Functions

Name	Lead Term	Big-Oh	Example
Constant	$1,5, c$	$O(1)$	$2.5,85,2 c$
Log-Log	$\log (\log (n))$	$O(\log \log n)$	$10+(\log \log n+5)$
Log	$\log (n)$	$O(\log (n))$	$5 \log n+2$
			$\log \left(n^{2}\right)$
Linear	n	$O(n)$	$2.4 n+10$
			$10 n+\log (n)$
N-log-N	$n \log n$	$O(n \log n)$	$3.5 n \log n+10 n+8$
Super-linear	$n^{1 \cdot x}$	$O\left(n^{1 \cdot x}\right)$	$2 n^{1.2}+3 n \log n-n+2$
Quadratic	n^{2}	$O\left(n^{2}\right)$	$0.5 n^{2}+7 n+4$
			$n^{2}+n \log n$
Cubic	n^{3}	$O\left(n^{3}\right)$	$0.1 n^{3}+8 n^{1.5}+\log (n)$
Exponential	a^{n}	$O\left(2^{n}\right)$	$8\left(2^{n}\right)-n+2$
		$O\left(10^{n}\right)$	$100 n^{500}+2+10^{n}$
Factorial	$n!$	$O(n!)$	$0.25 n!+10 n^{100}+2 n^{2}$

Constant Time Operations

The following take O(1) Time (Constant Time)

- Arithmetic operations (add, subtract, divide, modulo)
- Integer ops usually practically faster than floating point
- Accessing a stack variable
- Accessing a field of an object
- Accessing a single element of an array
- Doing a primitive comparison (equals, less than, greater than)
- Calling a function/method but NOT waiting for it to finish

The following take more than $\mathrm{O}(1)$ time (how much more)?

- Raising an arbitrary number to arbitrary power
- Allocating an array
- Checking if two Strings are equal
- Determining if an array or ArrayList contains() an object

Common Patterns

- Adjacent Loops Additive: $2 \times n$ is $O(n)$

```
for(int i=O; i<N; i++){
    blah blah blah;
}
for(int j=0; j<N; j++){
    yakkety yack;
}
```

- Nested Loops Multiplicative usually polynomial
- 1 loop, $O(n)$
- 2 loops, $O\left(n^{2}\right)$
- 3 loops, $O\left(n^{3}\right)$
- Repeated halving usually involves a logarithm
- Binary search is $O(\log n)$
- Fastest sorting algorithms are $O(n \log n)$
- Proofs are harder, require solving recurrence relations

Lots of special cases so be careful

Practice

Two functions to revers an array. Discuss

- Big-O estimates of runtime of both
- Big-O estimates of memory overhead of both
- Memory overhead is the amount of memory in addition to the input required to complete the method
- Which is practically better?
- What are the exact operation counts for each method?

reverseE

```
public static
void reverseE(Integer a[]){
    int n = a.length;
    Integer b[] = new Integer[n];
    for(int i=0; i<n; i++){
        b[i] = a[n-1-i];
    }
    for(int i=0; i<n; i++){
        a[i] = b[i];
    }
}
```

```
```

public static void

```
```

public static void
reverseI(Integer a[]){
reverseI(Integer a[]){
int n = a.length;
int n = a.length;
for(int i=0; i<n/2; i++){
for(int i=0; i<n/2; i++){
int tmp = a[i];
int tmp = a[i];
a[i] = a[n-1-i];
a[i] = a[n-1-i];
a[n-1-i] = tmp;
a[n-1-i] = tmp;
}
}
return;
return;
}

```
```

}

```
```


reversel

Much Trickier Exercise

```
public static String toString( String [ ] arr ) {
    String result = "";
    for( String s : arr ){
        result = result + s + " ";
    }
    return result;
}
```

- Give a Big-O estimate for the runtime
- Give a Big-O estimate for the memory overhead

Multiple Input Size

What if "size" has two parameters?

- $m \times n$ matrix
- Graph with m vertices and n edges
- Network with m computers and n cables between them

Exercise: Sum of a 2D Array

Give the runtime complexity of the following method.

```
public int sum2D(int [] [] A){
    int M = A.length;
    int N = A[0].length;
    int sum = 0;
    for(int i=0; i<M; i++){
        for(int j=0; j<N; j++){
            sum += A[i][j];
        }
    }
    return sum;
}
```


What if I have no idea?

Analyzing a complex algorithm is hard. More in CS 483.

- Most analyses in here will be straight-forward
- Mostly use the common patterns

If you haven't got a clue looking at the code, run it and check

- This will give you a much better sense

Observed Runtimes of Maximum Subarray

	Figure 5.4	Figure 5.5	Figure 7.20	Figure 5.8
N	$O\left(N^{3}\right)$	$O\left(N^{2}\right)$	$O(N \log N)$	$O(N)$
10	0.000001	0.000000	0.000001	0.000000
100	0.000288	0.000019	0.000014	0.000005
1,000	0.223111	0.001630	0.000154	0.000053
10,000	218	0.133064	0.001630	0.000533
100,000	NA	13.17	0.017467	0.005571
$1,000,000$	NA	NA	0.185363	0.056338

figure $\mathbf{5 . 1 0}$
Observed running times (in seconds) for various maximum contiguous subsequence sum algorithms

Weiss pg 203

Idealized Functions

Smallish Inputs

Larger Inputs

Actual Data for Max-Subarray

Algorithm

- - Cubic
- Linear
\rightarrow Quadratic
\rightarrow Recursive
- Where did this data come from?
- Does this plot confirm our analysis?
- How would we check?

Playing with MaxSumTestBetter.java

Let's generate part of the data, demo in
w01-1-code/MaxSumTestBetter. java

- Edit: Running a main, $\mathrm{n}=100$ to 100,000 , multipy by 10
- Try in DrJava
- Demo interactive loop

Analysis

Linear

> summary(linmod)

Coefficients:

	Estim	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	7.26	$<2 e-16$	$* * *$
poly (N, 1)	16.25	$<2 \mathrm{e}-16$	$* * *$
poly (N, 2)	-0.34	0.287	
poly $(\mathrm{N}, 3)$	-0.01	0.962	

$$
\operatorname{poly}(\mathrm{N}, 2) \quad-0.34 \quad 0.287
$$

$$
\operatorname{poly}(\mathrm{N}, 3) \quad-0.01 \quad 0.962
$$

Quadratic
 > summary (quadmod)

Coefficients:
Estim $\operatorname{Pr}(>|t|)$
(Intercept) $83.89<2 e-16 * * *$
poly ($\mathrm{N}, 1$) $278.16<2 e-16 * * *$
poly (N, 2) $54.75<2 e-16 * * *$
poly ($\mathrm{N}, 3$) $-0.24 \quad 0.562$

Why these coefficients?

Take-Home

Today

Order Analysis gives big picture of runtime and memory complexity of algorithms

- Different functions grow at different rates
- Big O upper bounds
- Big Theta tightly bounds
- Standard tricks to roughly figure out complexity of functions

Next Time

- What are the limitations of Big-O?
- Reading: finish Ch 5, Ch 15 on ArrayList
- Suggested practice: Exercises 5.39 and 5.44 which explore string concatenation, why obvious approach is slow for lots of strings, alternatives

