
CS 310: Order Notation (aka Big-O and friends)

Chris Kauffman

Week 1-2

Logistics

At Home
I Read Weiss Ch 1-4: Java Review
I Read Weiss Ch 5: Big-O
I Get your java environment set up
I Compile/Run code for Max Subarray problem form first lecture

Goals
I Finish up Course Mechanics
I Basic understanding of Big O and friends

How Fast/Big?

Algorithmic time/space complexity depend on problem size
I Often have some input parameter like n or N or (M,N) which

indicates problem size
I Talk about time and space complexity as functions of those

parameters
I Example: Two algorithms to find the maximum element for an

input array of size N,
I One algorithm finds the maximum element using 5 ∗ N + 3

operations
I Another finds the max element in N2 + 2N + 7 operations.

I Example: Two algorithms solve the Max Sub Array problem for
an input array of size N,

I Using 7 units of memory in addition to the input array
I Using an additional 9 + (N × (N + 1))/2 units of memory

I Big-O notation: bounding how fast functions grow based on
input

It’s Show Time!

Not The Big O Just Big O
T (n) is O(F (n)) if there are
positive constants c and n0 such
that

I When n ≥ n0

I T (n) ≤ cF (n)

Bottom line:
I If T (n) is O(F (n))

I Then F (n) grows as fast or
faster than T (n)

Show It

Show

f (n) = 2n2 + 3n + 2 is O(n3)

I Pick c = 0.5 and n0 = 6

n f (n) 0.5n3

0 2 0
1 7 0
2 16 4
3 29 13
4 46 32
5 67 62
6 92 108
7 121 171

● ● ● ●
●

●
●

●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

0

100

200

300

400

500

0.0 2.5 5.0 7.5 10.0
n

V
al

ue

Function ● ●0.5*n^3 2*n^2+3*n+2

How about the opposite? Show

g(n) = n3 is O(2n2 + 3n + 2)

Basic Rules

I Constant additions disappear
I N + 5 is O(N)

I Constant multiples disappear
I 0.5N + 2N + 7 is O(N)

I Non-constant multiples multiply:
I Doing a constant operation 2N times is O(N)
I Doing a O(N) operation N/2 times is O(N2)
I Need space for half an array with N elements is O(N) space

overhead
I Function calls are not free (including library calls)

I Call a function which performs 10 operations is O(1)
I Call a function which performs N/3 operations is O(N)
I Call a function which copies object of size N takes O(N) time

and uses O(N) space

Bounding Functions

I Big O: Upper bounded by . . .
I 2n2 + 3n + 2 is O(n3) and O(2n) and O(n2)

I Big Omega: Lower bounded by . . .
I 2n2 + 3n + 2 is Ω(n) and Ω(log(n)) and Ω(n2)

I Big Theta: Upper and Lower bounded by
I 2n2 + 3n + 2 is Θ(n2)

I Little O: Upper bounded by but not lower bounded by. . .
I 2n2 + 3n + 2 is o(n3)

Growth Ordering of Some Functions

Name Lead Term Big-Oh Example
Constant 1, 5, c O(1) 2.5, 85, 2c
Log-Log log(log(n)) O(log log n) 10 + (log log n + 5)
Log log(n) O(log(n)) 5 log n + 2

log(n2)

Linear n O(n) 2.4n + 10
10n + log(n)

N-log-N n log n O(n log n) 3.5n log n + 10n + 8
Super-linear n1.x O(n1.x) 2n1.2 + 3n log n − n + 2
Quadratic n2 O(n2) 0.5n2 + 7n + 4

n2 + n log n
Cubic n3 O(n3) 0.1n3 + 8n1.5 + log(n)

Exponential an O(2n) 8(2n) − n + 2
O(10n) 100n500 + 2 + 10n

Factorial n! O(n!) 0.25n! + 10n100 + 2n2

Constant Time Operations
The following take O(1) Time (Constant Time)

I Arithmetic operations (add, subtract, divide, modulo)
I Integer ops usually practically faster than floating point

I Accessing a stack variable
I Accessing a field of an object
I Accessing a single element of an array
I Doing a primitive comparison (equals, less than, greater than)
I Calling a function/method but NOT waiting for it to finish

The following take more than O(1) time (how much more)?

I Raising an arbitrary number to arbitrary power
I Allocating an array
I Checking if two Strings are equal
I Determining if an array or ArrayList contains() an object

Common Patterns

I Adjacent Loops Additive: 2× n is O(n)

for(int i=0; i<N; i++){
blah blah blah;

}
for(int j=0; j<N; j++){

yakkety yack;
}

I Nested Loops Multiplicative usually polynomial
I 1 loop, O(n)
I 2 loops, O(n2)
I 3 loops, O(n3)

I Repeated halving usually involves a logarithm
I Binary search is O(log n)
I Fastest sorting algorithms are O(n log n)
I Proofs are harder, require solving recurrence relations

Lots of special cases so be careful

Practice
Two functions to revers an array. Discuss

I Big-O estimates of runtime of both
I Big-O estimates of memory overhead of both

I Memory overhead is the amount of memory in addition to the
input required to complete the method

I Which is practically better?
I What are the exact operation counts for each method?

reverseE
public static
void reverseE(Integer a[]){

int n = a.length;
Integer b[] = new Integer[n];
for(int i=0; i<n; i++){

b[i] = a[n-1-i];
}
for(int i=0; i<n; i++){

a[i] = b[i];
}

}

reverseI
public static void
reverseI(Integer a[]){

int n = a.length;
for(int i=0; i<n/2; i++){

int tmp = a[i];
a[i] = a[n-1-i];
a[n-1-i] = tmp;

}
return;

}

Much Trickier Exercise

public static String toString(String [] arr) {
String result = "";
for(String s : arr){

result = result + s + " ";
}
return result;

}

I Give a Big-O estimate for the runtime
I Give a Big-O estimate for the memory overhead

Multiple Input Size
What if "size" has two parameters?

I m × n matrix
I Graph with m vertices and n edges
I Network with m computers and n cables between them

Exercise: Sum of a 2D Array
Give the runtime complexity of the following method.

public int sum2D(int [][] A){
int M = A.length;
int N = A[0].length;
int sum = 0;
for(int i=0; i<M; i++){

for(int j=0; j<N; j++){
sum += A[i][j];

}
}
return sum;

}

What if I have no idea?

Analyzing a complex algorithm is hard. More in CS 483.
I Most analyses in here will be straight-forward
I Mostly use the common patterns

If you haven’t got a clue looking at the code, run it and check
I This will give you a much better sense

Observed Runtimes of Maximum Subarray

Weiss pg 203

Idealized Functions

Smallish Inputs Larger Inputs

Actual Data for Max-Subarray

●●●

●

●●
●

●

●●
● ●

●

●
●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

50

100

150

200

250 500 750 1000
N

T
im

e

Algorithm

●

●

●

●

Cubic

Linear

Quadratic

Recursive

I Where did this data come from?
I Does this plot confirm our analysis?
I How would we check?

Playing with MaxSumTestBetter.java

Let’s generate part of the data, demo in
w01-1-code/MaxSumTestBetter.java

I Edit: Running a main, n=100 to 100,000, multipy by 10
I Try in DrJava
I Demo interactive loop

Analysis

Linear

> summary(linmod)

Coefficients:
Estim Pr(>|t|)

(Intercept) 7.26 <2e-16 ***
poly(N, 1) 16.25 <2e-16 ***
poly(N, 2) -0.34 0.287
poly(N, 3) -0.01 0.962

Quadratic

> summary(quadmod)

Coefficients:
Estim Pr(>|t|)

(Intercept) 83.89 <2e-16 ***
poly(N, 1) 278.16 <2e-16 ***
poly(N, 2) 54.75 <2e-16 ***
poly(N, 3) -0.24 0.562

Why these coefficients?

Take-Home

Today
Order Analysis gives big picture
of runtime and memory
complexity of algorithms

I Different functions grow at
different rates

I Big O upper bounds
I Big Theta tightly bounds
I Standard tricks to roughly

figure out complexity of
functions

Next Time
I What are the limitations of

Big-O?
I Reading: finish Ch 5, Ch 15

on ArrayList
I Suggested practice:

Exercises 5.39 and 5.44
which explore string
concatenation, why obvious
approach is slow for lots of
strings, alternatives

