
CS 310: Prelude

Chris Kauffman

Week 1-1

Noteworthy

Trading resumes on NYSE after
nearly 4-hour outage, CNN
7/8/2015

Pricing Problem Suspends Nasdaq
for Three Hours, NYT 8/22/2013

http://money.cnn.com/2015/07/08/investing/nyse-suspends-trading/
http://money.cnn.com/2015/07/08/investing/nyse-suspends-trading/
http://money.cnn.com/2015/07/08/investing/nyse-suspends-trading/
http://dealbook.nytimes.com/2013/08/22/nasdaq-market-halts-trading/
http://dealbook.nytimes.com/2013/08/22/nasdaq-market-halts-trading/

Make Some Money

You get hired by an investment firm (cha-ching).
First task: analyze historical stock performances to locate good
times to buy and sell.

I Buy low and Sell high
I Or don’t play at all

Many Options

Don’t play: 0 gain

The Best Buy

How Would you find Best Increase?

price i delta
886
890 0 4
880 1 -10
890 2 10
899 3 9
911 4 12
903 5 -8
913 6 10
920 7 7
924 8 4
927 9 3
921 10 -6
919 11 -2
887 12 -32
902 13 15

How is payoff computed for
start=1 and end=3?
For start=6 and end=10?

Several names for the Problem
I Maximum contiguous subsequence

sum (text)
I Maximum Subarray (wikip)
I Find start and end time with

largest payoff out of all possible

Find a Solution
I Input is the array delta[]
I Output: (start, end, payoff)

such that payoff is as large as
possible

I Can optionally not invest for no
payoff; return (-1,-1,0)

http://en.wikipedia.org/wiki/Maximum_subarray_problem

Algorithm 1: Brute Force

maxSubsequenceCube(int A[]){
bestPayoff = 0
bestStart = -1
bestEnd = -1
for start=0 to A.length-1 {

for end=start to A.length-1 {
currentPayoff = 0
for i=start to end {

currentPayoff += A[i]
}
if(currentPayoff > bestPayoff){

bestPayoff = currentPayoff
bestStart = start
bestEnd = end

}
}

}
return bestPayoff, bestStart, bestEnd

}

I A[] contains deltas
I Try every possible start

and end (outer loops)
I Calculate increase from

start to end
I Track the best seen
I Complexity?
I Anything better

Algorithm 2: Skip the inner loop

maxSubsequenceQuad(int A[]){
bestPayoff = 0
bestStart = -1
bestEnd = -1
for start=0 to A.length-1 {

currentPayoff = 0
for end=start to A.length-1 {

currentPayoff += A[end]
if(current > best){

bestPayoff = currentPayoff
bestStart = start
bestEnd = end

}
}

}
return bestPayoff, bestStart, bestEnd

}

I Try every start and end
I Don’t recalculate

currentPayoff in a loop
I ’Remember’ last

currentPayoff as end
changes

Algorithm 2 Alternative: Convert to global Prices

maxSubsequenceQuad(int A[]){
B = new array size A.length
B[0] = A[0]
for i=1 to B.length-1

B[i] = B[i-1] + A[i]

best = 0
bestStart = -1
bestEnd = -1
for start=0 to A.length-1 {

for end=start to A.length-1 {
current = B[end] - B[start]
if(current > best){

best = current
bestStart = start
bestEnd = end

}
}

}
return best, bestStart, bestEnd

}

I Initially convert deltas in A
to global prices in B

I First price doesn’t matter as
interested in changes

I Try every start and end
I Easy to calculate

currentPayoff
I Memory overhead?

Anything Better?

I maxSubsequenceCube(): most straight-forward enumeration
of all possible solutions

I maxSubsequenceQuad(): used a trick to speed up
enumeration

Increasing speed now calls for some deeper insight

A Helpful Property
Proposition: The shortest maximum subsequence beginning at
start and finishing at end contains no point mid between them
with a lower value than start.

Proof by Contradiction:
I Suppose shortest max

subsequence exists, looks
like picture.

I x must be lower than end,
o/w could form a shorter
maximum subsequence
start to x

I But if mid is lower then
start, sequence mid to end
has a larger increase than
start to end.

Contradiction

start mid endx

Consequence: If mid drops below
start, reset start to mid
Create a faster algorithm based
on this property.

Algorithm 3: Scan

maxSubsequenceLinear(int A[]){
best = 0
current = 0
bestStart = -1
bestEnd = -1
start = 0
for end=0 to A.length-1 {

current += A[end]
if(current > best){

best = current
bestStart = start
bestEnd = end

}
else if(current < 0){

start = end+1;
current = 0;

}
}
return best,bestStart,bestEnd;

}

I A[] contains deltas
I When sum current falls

below zero, move start to
end and reset

I Single pass over entire array

Max Subsequence Algorithms Synopsis

Comparisons

I maxSubsequenceCube(): triply nested loops over entire array,
O(N3)

I maxSubsequenceQuad(): doubly nested loops over entire
array, O(N2)

I maxSubsequenceLinear(): single loop over entire array,
O(N)

I N: size of the array of deltas

Intuition: for large arrays, maxSubsequenceLinear() will produce
answers faster

Demonstration
This happens in practice, see MaxSumTestBetter.java for
implementations with timing.

Course Synopsis

I Look at problems
I Identify solutions
I Evaluate solution for its "goodness"

I What metrics of goodness exist for code?
I Which metrics are most important

I Most solutions will involve an algorithm and a data structure
I What’s an algorithm?
I What’s a data structure?

Syllabus and Schedule

Both linked on Piazza, tons of info on
I Grading
I Assignment submission
I Policies (late work, etc.)
I Schedule of events

Highlights to follow. . .

Preconditions

This is a 3rd programming class.
I CS 211 Prereq
I Know Java
I You have easy access to a computer with java

Not sure if you’re ready?

I Review first chapters of Weiss for Java refresher, should
mostly be stuff you already know

I Inspect past CS 211 projects: could you solve them in given
times?

https://cs.gmu.edu/~kauffman/cs211/p3.html (7 days)
https://cs.gmu.edu/~kauffman/cs211/p6.html (10-14 days)

https://cs.gmu.edu/~kauffman/cs211/p3.html
https://cs.gmu.edu/~kauffman/cs211/p6.html

Cheating

Don’t cheat
I Easy to catch
I Pain for you
I Pain for me (makes me ornery)
I If you don’t get caught, you’ll still suck at programming

Cooperation is not automatically cheating.
I Examples discussed

Hot Seats

I Each session, first few rows are hot seats
I First come, first serve (adjust if needed)
I Don’t want/need participation, sit elsewhere
I Just try: answer questions, give feedback, get cards
I Return and count cards at end of each session
I Up to 3% overall bonus

I Luke and Leia have 20 cards, max in class, 3% bonus each
I Han and Chewie have 10 cards, 1.5% bonus each
I Greedo has 0 part pts, 0.0% bonus

I Scoring described in Syllabus
I Participation is only opportunity for extra credit
I May be a few other opportunities for participation

Textbook

Weiss is pretty good
I I’ll assume you’re reading it
I Likely want to get the text

source code

http://users.cis.fiu.edu/~weiss/dsj4/code/

We’re on Piazza

Should all have received an invitation to join the Piazza class
(piazza.com)

I Discussion
I Announcements
I Schedule

Blackboard only for
I Assignment submission
I Grades

95% of the time you should post, not email
Mail me for

I Personal appointments
I Unresolvable grading disputes

Your Teaching Team and Office Hours

See Piazza Staff Section
I Kauffman Plans Office Hours Tue 3-5pm (OK?)
I Remaining course staff will have office hours posted on Piazza

by week’s end

Name Email
Chris Kauffman kauffman@cs.gmu.edu Prof
Fardin Alam falam5@masonlive.gmu.edu GTA

Tools

The official java tools of the course are
I jdk 1.8, official build and run tools from Oracle
I DrJava, a simple, superior java IDE (if you’re into IDEs)

Minor support given for (though not official)
I jGrasp, a decent IDE with drawing capabilities, used for some

in-class examples
Special Note:

I I probably don’t know how to use IDE X and won’t
be learning this semester

I TAs may be able to help you but are not required to
do so.

I In class I will use Emacs, command line, DrJava,
JGrasp.

I If you have questions on those I’m happy to help.

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://cs.gmu.edu/~kauffman/drjava
http://www.jgrasp.org/

Special Note on DrJava

We’ve made some improvements at GMU
I Better test result printing
I Fixed debugger activation bug
I Unofficial, trying to get into main distrib
I Strongly encourage DrJava users to grab this version
I Download here: https://cs.gmu.edu/~kauffman/drjava/

https://cs.gmu.edu/~kauffman/drjava/

Slides

I Will try to make slides available before class
I Slides always available sometime after class
I Slides are not much good without accompanying conversation
I Code examples posted after class
I Link to slide page: Pizza/Resources

Programming Assignments

3-4 of them during the semester
I 35% of you grade
I Medium-large implementations using data structures
I Grading in three parts

I Milestone JUnit test cases
I Automated JUnit test cases
I Manual GTA inspection for quality

I Submit to blackboard, 11:59 p.m. Saturdays

Focus

A Study
The students in the first
experiment who were asked to
multitask [during lecture]
averaged 11 per cent lower on
their quiz.
The students in the second
experiment who were surrounded
by laptops scored 17 per cent
lower.
Laptop use lowers student grades,
experiment shows, The Canadian
Press, 8-14-2013

http://www.cbc.ca/news/technology/story/2013/08/14/technology-laptop-grades.html
http://www.cbc.ca/news/technology/story/2013/08/14/technology-laptop-grades.html
http://www.cbc.ca/news/technology/story/2013/08/14/technology-laptop-grades.html

Effective Procrastination
I Adam Grant: Can Slowing Down Help You Be More Creative?

I Start something early (Milestone Deadline)
I Then take a break
I Then finish strong (Final Deadline)

I Tim Urban: What Happens In The Brain Of An Extreme
Procrastinator?

Early Later. . . .

http://www.npr.org/2016/08/26/490625260/can-slowing-down-help-you-be-more-creative
http://www.npr.org/2016/08/26/490626164/what-happens-in-the-brain-of-an-extreme-procrastinator
http://www.npr.org/2016/08/26/490626164/what-happens-in-the-brain-of-an-extreme-procrastinator

Logistics

At Home
I Read Weiss Ch 1-4: Java Review
I Read Weiss Ch 5: Big-O
I Get your java environment set up

Goals Today

I More Course Mechanics
I Basic understanding of Big O and friends
I This Chapter 5 material

