
CS 222: Data Structures: Vector and List

Chris Kauffman

Week 7-1

Logistics

Reading

I Ch 10 (Vector/List Data
Types)

I Start finishing up exercises

Final Exam: Next Week
Thursday

Homework 6 Posted Later
Tonight

I 5 problems
I Counts as 2 HWs
I Will be due next Tue night

Exam 2 Results

Histogram

Count Count
0 - 100 7
80 - 89 16
70 - 79 6
60 - 69 7
50 - 59 3
40 - 49 0

Summer 2015

Stat Val
Count 39
Min 50.00
Max 96.00
Average 78.51
Median 82.00
Stddev 12.53

Summer 2014

Stat Val
Count 31
Min 41.17
Max 96.47
Average 76.65
Median 82.35
Stddev 14.47

Vector/ArrayList Motivation

Array Limitations

I malloc’d arrays can’t grow
I Very inconvenient in many situations

I Reading from files

I A data structure is an arrangement of memory for convenience
and efficiency

I Can create illusion of expandable arrays with the right data
structure

Vector or ArrayList

I Like an array: get elements, set elements
I Can grow and resize (how?)

Vector Operations

I Create
I Destroy (free)
I Get current size
I Change current size
I Get an element at given index
I Set an element at a given index
I Append an element (to the end)

See int_vector.h

Reminder: Arrows for struct pointer field access

Actual struct access fields with s.field

channel_params cp = {...};
double f = cp.frequency;

Pointer to struct access fields with with p->field

channel_params * ptr = &cp;
double x = ptr->phase;

Will be used more with data structures as usually have pointer to
vector/list

Demonstration: sort_numbers.c

I Read numbers from user
I Adds numbers to end of array during reading
I Code reads much simpler than previous attempts
I Can do I/O in single pass
I Hidden cost: realloc()

Tour of Vector Functions

Examine vector/int_vector.c

Practice: int_vector_remove(vec, i)

void int_vector_remove(int_vector *v, int rm_idx)

I Remove element at index rm_idx
I Must be in bounds (less than size
I Elements shift left to fill in gap
I Size decrements

Examples

int_vector *v = int_vector_create(); int_vector_add(v, 5);
int_vector_add(v, 8); int_vector_add(v, 4); int_vector_add(v, 1);
// [5, 8, 4, 1]
// 0 1 2 3
int_vector_remove(v, 1);
// [5, 4, 1]
// 0 1 2
int_vector_remove(v, 2);
// [5, 4]
// 0 1

realloc()

void *realloc(void *ptr, size_t size);

I Relative of malloc()
I Attempts to reallocate in place
I If no room, allocate and copy memory

Discussion: Efficiency of Expanding by 1

I Consider the efficiency of always growing vector by 1
I Very bad in practice: O(N) append cost
I Alternative: Allocate extra space, leads to O(1) amortized

append cost
I Study in detail in CS 310

Sorting with qsort()

I If time, discuss the qsort() routine
I Library call to do sorting on arbitrary data
I Screwy because it requires a function argument

Makefile Defining your own Libraries, Compilation

I Examine the vector directory
I Makefile to build library
I Examine compile line for sort_numbers.c

Notion of a List

I Abstract notion of ordered elements
I Can index by number (0th element, 5th element)
I set(i,x) and get(i) operations
I Can grow list somewhere, end or beginning

Vector is a kind of List

I Advantages
I Disadvantages

Linked List

Fundamental in computer science
I Most basic use of pointers to create a useful data structure
I Compared to Arrays

Give up fast indexed access
Gain unlimited append, flexible insert

I An element contains
Data number, struct, pointer, whatever
Next A pointer to another element

Data
(???)

Next
(node)

Node

data next

5

data next

10

data next

22

Linked List

Interactive Demo: read_all_numbers.c

I People are stack frame variables
I People are nodes
I Chris is malloc()

