
CS 222: More File I/O, Bits, Masks, Finite State
Problems

Chris Kauffman

Week 6-1

Logistics

Reading

I Ch 9 (file i/o)
I Ch 11 finish (practical

programming)

Exam 2 Thursday
Practice Problems posted
tomorrow morning

Homework
I HW 5 due tonight
I HW 6 up by Thursday

HW 5 Due Tonight: Questions?
Problem 1: outer_product()

I No freeing required

Problem 3: channel_params allocation

I Make sure your array is sized right
I Lots of struggle with iteration; work examples, compare to

your own results, look for a pattern
I No freeing necessary

Problem 4: Longest Line

I Same pattern of find the best thing as we have seen on several
previous HWs

I Must use fgetc() of fscanf(f,"%c",&in); for this one to
look at each character

I Deductions for use of fgets() of fscanf(f,"%s",buf)

Goals

I File Output
I File I/O for Structs
I Bit operations in C
I Modeling problems with finite state

Warm-up: Non-whitespace count

I Write a main() function
I Accepts a command line arg, named file
I Open file, process it
I Count all non-whitespace (word) characters in the file
I Use the isspace(char c) function:

I True when a c is a space character
I False otherwise

> gcc count_nonws.c
> a.out
usage: a.out filename
> a.out stuff.txt
stuff.txt has 23 non-whitespace character
> a.out other.txt
other.txt has 144 non-whitespace character

Writing Files

Done with fprintf(file,format,arg1,arg2,...)

I Works like printf() except
first arg is a FILE*

I Open files for writing
I Will create files if they don’t

exist

#include <stdio.h>
int main(){

FILE *f = fopen("myfile","w");
fprintf(f,"Overwrite now\n");
fclose(f);

}

A Note on Buffering

Operating systems try to optimize I/O operations
I Data doesn’t get pushed to disk right away
I Guaranteed when fclose is called
I See buffering-problems.c
I Other ways to force writing (fflush(file))
I See buffering-flush.c

Demonstration: input2file.c

I Reads characters of input
I Writes to a file
I A short way to save files

Exercise: File Copying

I Copy a file character by character to another file
I Both files named on command line
I Use the basic input loop provided in input2file.c

> gcc copy_file.c
> a.out fileA.txt copyA.txt
> cat fileA.txt
hello world!
I am a file
with stuff and everything
> cat copyA.txt
hello world!
I am a file
with stuff and everything

Bit Operations

Mangling bits puts hair on your chest.
Logical && and || are AND and OR

I int x = 12 || 10; // is 1

Bitwise & and | are AND and OR
I int x = 12 | 10; // is 14

1100 1101
OR 1010 AND 1010
------- --------

1110 1000

^ is bitwise XOR (exclusive or)
! is logical not
~ is bitwise not - flips bits

Bit Masks

I #define often used to establish masks: specific pattern of bits
for use with computation

Bit Shifts

I << is left shift
I x = y << 3;
I Move all bits in y to the

left by 4
I Store the result in x

I >> is right shift
I x = y >> 2;
I Move all bits in y to the

right by 2
I Store the result in x

12345678
y 10010011

y << 3 10011000

12345678
y 10010011

y >> 2 00100100

Demos: Show Bits and Shifting

showbits.c

I Shows the bits of integer arguments
I Demonstrates practical use of bit shifts and masks

> gcc showbits.c
> a.out 0 5 8 22 128 345 -7 -1
Binary Hex Decimal
00000000000000000000000000000000 0 0
00000000000000000000000000000101 5 5
00000000000000000000000000001000 8 8
00000000000000000000000000010110 16 22
00000000000000000000000010000000 80 128
00000000000000000000000101011001 159 345
11111111111111111111111111111001 FFFFFFF9 -7
11111111111111111111111111111111 FFFFFFFF -1
Binary Hex Decimal

Other Bit Examples

bitshifts.c

I Arguments are integer and shift
I Shows bits after a LEFT shift

showbits_float.c

I Trickier example involving showing the bits of a floating point
number

I Must use a union to as bitwise ops only defined for integer
types (char, short, int, long)

Exercise: Count Bits

I Write function that counts
how bits are set in an integer
int count_ones(int num)

I Very helpful: loop in
showbits(int x) function

I Provided main() tests

> gcc count_bits.c
> a.out 111
Number 111 has 6 ones
> a.out 22
Number 22 has 3 ones
> a.out -1095
Number -1095 has 28 ones

int count_ones(int num){
// Your code here

}
int main(int argc, char **argv){

if(argc < 2){
printf("usage: %s integer\n",

argv[0]);
return -1;

}
int number = atoi(argv[1]);
int ones = count_ones(number);
printf("Number %d has %d ones\n",

number,ones);
return 0;

}

Finite State Problems

I Class of problems
I Limited (finite) number of

states in which a system can
be in

I Transitions from one state to
another are well-defined

I Often occur with devices,
small electronics, games

I Usually draw states in a
map-like fashion

Example: The Light Switch

I Single button, push toggles
light on/off

I Button: physical device that
can be pushed

I Light: can be set to ON or
OFF

On

Off

Push
Button

Push
Button

Light Switch Code: light_switch_easy.c

I On starting, microcontroller
sets variables corresponding
to hardware

I Also runs an init()
function which allows
programmer to set their own
variables

I Microcontroller runs an
update() function every so
often

I Code checks special global
variables to detect button
pushes

I Code sets special global
variables to change lights
on/off

I Code tracks present state

On

Off

Push
Button

Push
Button

Variant: Access Hardware State via Bit Operations

I Sometimes single bits are used to indicate hardware state
I Masks become useful for detecting and setting hardware

features

Example
PORT global variable controls light and indicates button pushes

I Bit 0 can be written or read; turns light on and off
I Bit 1 can only be read, indicates a button was pushed

Hardcore
I light_switch_hardcore.c
I Uses hex values for masks

Readable
I light_switch_readable.c
I Uses #define to establish

masks

Discussion: On and Off Switches

I Two buttons: On/Off
I When in ON state, light on,

pushing On Button does
nothing

I When in OFF state, light
off, pushing Off Button does
nothing

I Transition between states

Modify the code for
light_switch_readable.c to
accomodate changed model

On

Off

Push
Off

Push
On

On

Off

Push
On

Push
Off

