CS 222: File 1/0

Chris Kauffman

Week 5-2

Logistics

Reading

» Ch 8 (pointers)
» Ch 9 (filei/o)

Exam 2
Next Week Thursday

Homework

» HWS5 now up
» Multidimensional allocation

» Some file processing

Goals

» HW 5 Overview
» File 1/0

HW 5

v

v

v

v

Outer product of vectors -> matrix
Freeing a matrix
Allocating arrays of channel_params

Counting line lengths in a file

Files: First Guesses

v

What's a file?

How will it be represented?

v

v

How will C communicate with it?

v

How do we access that communication mechanism?

v

Is the terminal different from file for reading and writing?

Old and New

» printf and scanf
» What arguments do they take?
» fprintf and fscanf

» How to "get at" them
» What are their argument?

See basic_input.c and basic_output.c

Make Me a FILE as Quick as you can

FILE *fopen(char *fname, char *mode)

» Opens a file
» fname is name of file to open
» mode is usually

"' Read from file, text mode

"w" write to file, text mode
"rb" and "wb" read or write binary mode

» Returns a pointer to a FILE struct, used with
fscanf/fprintf

fclose(FILE *f)

» Close a file

Standard Input and Standard Output

e e L e Fom - |
| Original | Equivalent |
R e L e Fom - |
| printf("Hi\n"); | fprintf(stdout,"Hi\n"); |
| scanf("%s",buf); | fscanf(stdin,"%s",buf); |
[—=mm e o - |

Can you do less or more with fprintf/fscanf compared to
printf/scanf?

Note on Input Parsing

» scanf () and fscanf () both ignore whitespace
» Whitespace includes multiple space, newline, and tab
characters
» Can be a little finicky at times so take care
» Functions see input as one long continuous string
» fscanf () moves notion of file position around
» Can reposition with some functions

FILE *f = fopen("something.txt","r");

1.23 4 2 \nhello world\t\thow are you?\n\n\nThis is the end\nEOF
012345678901 234567890123 4 5678901234567 8 9 0123456789012345 6

- 1 2 3 4 5

f

double x; int i; fscanf("}1f %d",&x,&i);

1.23 4 2 \nhello world\t\thow are you?\n\n\nThis is the end\nEOF
012345678901 234567890123 4 5678901234567 8 9 0123456789012345 6

- 1 2 3 4 5

£

EOF Character

» A special character which indicates the end of a file.
» Returned by many input functions to indicate no more input
» scanf/fscanf/getc/getchar all return at end of input

for(status = fscanf(f,"%s",buf);
status != EOF;
status = fscanf(f,"%s",buf)){
printf ("Word %2d: %s\n",i,buf);
i++;

}
Modify show_words_scanf.c: to use file named on command line

EOF from Wikipedia
The actual value of EOF is system-dependent (but is
commonly -1, such as in glibc) and is unequal to any valid

character code.
— Wikipedia/End-of-file

http://en.wikipedia.org/wiki/End-of-file

Exercise: sum_file()

Pseudocode

>

Write a main() method that
accepts command line
arguments

Check that there is at least 1
command line argument

> If not exit the program

Open the file named in
argv[1] for reading

Read doubles until the end
of the file

Close the file
Print the sum

Note: no need for arrays here

Example Use

$> gcc -o sum_file sum_file.c
$> ./sum_file

usage: sum_file filename

$> ./sum_file filel.dat

file filel.dat sums to +1.00
$> ./sum_file file2.dat

file file2.dat sums to +1.00
$> ./sum_file file3.dat

file file3.dat sums to +0.00
$> ./sum_file file4d.dat

file file4.dat sums to +20.00

A few more goodies

Only stdin/stdout

int getchar() read single character
int putchar(char c) print single character
char *gets(char *buf) read whole line (DANGEROUS)

Any file

int getc(FILE *f) read single character
int putchar(FILE *f) print single character

char *fgets(char *buf, int n, FILE *f) read whole line, up
to n characters

int fgetc(FILE *f) analagous as getc

Exercise: Simple counts

The unix utility wec reports how many characters, lines, and words
are in a file.

lila [w05-2-codel’, wc filel.dat
3 3 27 filel.dat
3 lines, 3 words, 27 characters

lila [w05-2-codel’, wc parrot.c
10 31 193 parrot.c
10 lines, 31 words, 193 characters

» Write a main() which counts

» How many characters are in a file
» How many lines are in a file

» char input = fgetc(); makes this easy
» input will be \n on line breaks

» input will be EOF when file ends

Reminder: FILE is a struct like any other

» fopen() returns a pointer to one

» Fields are system dependent (different between
Mac/Windows/Linux)

» How could | ask how big a FILE struct is?

See file_struct_size.c

Note on Output Buffering

Operating systems try to optimize 1/O operations
» Data doesn't get pushed to disk right away
» Guaranteed when fclose is called
> See buffering.c
» Other ways to force writing (££1lush)

Sample: Write A Range
See range_cmdline.c
Write a range of numbers to the screen
Adapt this to write range to file
File is first arg on command line
2nd arg is first number
3rd arg is last number

vV vy vV VY

gcc range_cmdline_file.c
a.out myfile.txt 3 7
cat myfile.txt

a.out otherfile.txt 8 10
cat otherfile

© 00V VN0 O d WV VYV

-
o

Optional Exercise: Parrot

Define a parrot

» Whatever you type it spits back

Define a file copy

» Takes 2 command line arguments

» Copies contents of named file argl to named file arg2

