
CS 222: File I/O

Chris Kauffman

Week 5-2

Logistics

Reading

I Ch 8 (pointers)
I Ch 9 (file i/o)

Exam 2
Next Week Thursday

Homework
I HW5 now up
I Multidimensional allocation
I Some file processing

Goals

I HW 5 Overview
I File I/O

HW 5

I Outer product of vectors -> matrix
I Freeing a matrix
I Allocating arrays of channel_params
I Counting line lengths in a file

Files: First Guesses

I What’s a file?
I How will it be represented?
I How will C communicate with it?
I How do we access that communication mechanism?
I Is the terminal different from file for reading and writing?

Old and New

I printf and scanf
I What arguments do they take?

I fprintf and fscanf
I How to "get at" them
I What are their argument?

See basic_input.c and basic_output.c

Make Me a FILE as Quick as you can

FILE *fopen(char *fname, char *mode)

I Opens a file
I fname is name of file to open
I mode is usually

"r" Read from file, text mode
"w" write to file, text mode

"rb" and "wb" read or write binary mode
I Returns a pointer to a FILE struct, used with

fscanf/fprintf

fclose(FILE *f)

I Close a file

Standard Input and Standard Output

|------------------+-------------------------|
| Original | Equivalent |
|------------------+-------------------------|
| printf("Hi\n"); | fprintf(stdout,"Hi\n"); |
| scanf("%s",buf); | fscanf(stdin,"%s",buf); |
|------------------+-------------------------|

Can you do less or more with fprintf/fscanf compared to
printf/scanf?

Note on Input Parsing
I scanf() and fscanf() both ignore whitespace

I Whitespace includes multiple space, newline, and tab
characters

I Can be a little finicky at times so take care
I Functions see input as one long continuous string
I fscanf() moves notion of file position around
I Can reposition with some functions

FILE *f = fopen("something.txt","r");

1.23 4 2 \nhello world\t\thow are you?\n\n\nThis is the end\nEOF
012345678901 234567890123 4 5678901234567 8 9 0123456789012345 6
^ 1 2 3 4 5
f

double x; int i; fscanf("%lf %d",&x,&i);

1.23 4 2 \nhello world\t\thow are you?\n\n\nThis is the end\nEOF
012345678901 234567890123 4 5678901234567 8 9 0123456789012345 6

^ 1 2 3 4 5
f

EOF Character
I A special character which indicates the end of a file.
I Returned by many input functions to indicate no more input
I scanf/fscanf/getc/getchar all return at end of input

for(status = fscanf(f,"%s",buf);
status != EOF;
status = fscanf(f,"%s",buf)){

printf("Word %2d: %s\n",i,buf);
i++;

}

Modify show_words_scanf.c: to use file named on command line

EOF from Wikipedia
The actual value of EOF is system-dependent (but is
commonly -1, such as in glibc) and is unequal to any valid
character code.
– Wikipedia/End-of-file

http://en.wikipedia.org/wiki/End-of-file

Exercise: sum_file()

Pseudocode
I Write a main() method that

accepts command line
arguments

I Check that there is at least 1
command line argument

I If not exit the program

I Open the file named in
argv[1] for reading

I Read doubles until the end
of the file

I Close the file
I Print the sum
I Note: no need for arrays here

Example Use

$> gcc -o sum_file sum_file.c
$> ./sum_file
usage: sum_file filename
$> ./sum_file file1.dat
file file1.dat sums to +1.00
$> ./sum_file file2.dat
file file2.dat sums to +1.00
$> ./sum_file file3.dat
file file3.dat sums to +0.00
$> ./sum_file file4.dat
file file4.dat sums to +20.00

A few more goodies

Only stdin/stdout

int getchar() read single character
int putchar(char c) print single character
char *gets(char *buf) read whole line (DANGEROUS)

Any file

int getc(FILE *f) read single character
int putchar(FILE *f) print single character
char *fgets(char *buf, int n, FILE *f) read whole line, up

to n characters
int fgetc(FILE *f) analagous as getc

Exercise: Simple counts
The unix utility wc reports how many characters, lines, and words
are in a file.

lila [w05-2-code]% wc file1.dat
3 3 27 file1.dat

3 lines, 3 words, 27 characters

lila [w05-2-code]% wc parrot.c
10 31 193 parrot.c

10 lines, 31 words, 193 characters

I Write a main() which counts
I How many characters are in a file
I How many lines are in a file

I char input = fgetc(); makes this easy
I input will be \n on line breaks
I input will be EOF when file ends

Reminder: FILE is a struct like any other

I fopen() returns a pointer to one
I Fields are system dependent (different between

Mac/Windows/Linux)
I How could I ask how big a FILE struct is?

See file_struct_size.c

Note on Output Buffering

Operating systems try to optimize I/O operations
I Data doesn’t get pushed to disk right away
I Guaranteed when fclose is called
I See buffering.c
I Other ways to force writing (fflush)

Sample: Write A Range
See range_cmdline.c

I Write a range of numbers to the screen
I Adapt this to write range to file
I File is first arg on command line
I 2nd arg is first number
I 3rd arg is last number

> gcc range_cmdline_file.c
> a.out myfile.txt 3 7
> cat myfile.txt
3
4
5
6
7
> a.out otherfile.txt 8 10
> cat otherfile
8
9
10

Optional Exercise: Parrot

Define a parrot

I Whatever you type it spits back

Define a file copy

I Takes 2 command line arguments
I Copies contents of named file arg1 to named file arg2

