
CS 222: Aggregate Data, Pointers, File I/O

Chris Kauffman

Week 5-1

Logistics

Reading

I Ch 8 (pointers)
I Ch 9 (file i/o)

Exam 2
Next Week Thursday

Homework
I HW4 due tonight
I HW5 up tomorrow
I Multidimensional arrays
I Some string processing

Goals Today

I Feedback
I More memory allocation
I Structs and memory
I Multidimensional Arrays
I File I/O

Midterm Feedback

I Will post online
I No major overhauls indicated
I Comments on time spent on HW

HW 4 Due Tonight

Advice
I Don’t need to allocate any memory for structs, only doubles
I Make sure to allocate the right amount of memory, manual

inspection may lose points
I Make sure to free() in appropriate problems
I Favor square brace/array access

x[i] + y[i]

to pointer arithmetic
(*x) + (*y)
x=x+1; y=y+1;

Questions?

Composing Elements: Arrays of Structs

See solarsys.c

A struct with an array

typedef struct{
char name[128];
double dist;

} planet_t;
...
{

planet_t earth =
{"earth", 1.0};

}

An array of structs

planet_t solarsys[9];
double d5 = solarsys[5].dist;

Later, structs with structs as
elements

Modifications to solarsys.c

1. Dynamically allocate an array of 8 planets; copy over the first
8 into this array and print the new system

2. Dynamically allocate space for a single planet. Copy Pluto into
that space and print its name and distance

3. Free the dynamically allocated space

Q: How does one dynamically allocate memory in C? Where does it
come from?

Code Vs Data

In solarsys.c we have a nice way to express the layout of some
data in code.

I This doesn’t happen very often in C, C++, Java, etc.
I It happens a lot in Lisp, ML, Haskell, Python, etc.

Compose

Seen so far
I Structures with array fields

I planet_t with character array
I Arrays of structures

I planet_t solar_sys[9]
I Structures with struct fields

I planet_t with axis_t as a field

New
I Arrays of arrays (of arrays of . . .)

I double matrix[4][3];
I cubicle office[2][3][2];

Multidimensional Access/Assign

Use multiple [], one for each dimension of multi-D array

double matrix[4][3];
matrix[0][0] = 1.0;
matrix[0][1] = 10.0;
matrix[0][2] = 100.0;

matrix[1][0] = 2.0;
...
matrix[3][2] = 400.0;

double z = matrix[0][1] * 4;

Alternative: initialize whole thing, see matrix_init.c

Pointers to pointers (to pointers . . .)

Can point to another pointer

int i = 1;
int *ip = &i;
int **ipp = &ip;
int ***ippp = &ipp;

printf("%d\n", *ip);
printf("%d\n", **ipp);
printf("%d\n", ***ippp);

Dynamically allocated matrix

What if we want the following:

Input matrix size: 8 2
El 0 0: 0.0
El 0 1: 0.1
El 1 0: 1.0
El 1 1: 1.1
...
El 7 1: 7.1

i.e. read size and elements from user?
See matrix_dynamic_alloc.c for examples

I Modify to read rows/cols from user

Ragged Matrix

Not required to have every row the same length
I Not strictly a matrix then
I Can be useful: char **strs

BREAKTIME

Back in 15 minutes

Convenience

Going to work with files in a moment. Usually tell programs what
files to operate on the command line

gcc sin_sample.c -lm
ls -l read_planets.c
rm a.out sin_sample.c~

It’s time to communicate with command line arguments

main unveiled

Simplest: int main(){
More common: int main(int argc, char **argv){

I What kind of a thing is argv?

Command Line Arguments

Passed to C programs through main.
argc how many, always 1 which is name of program

running
argv array of strings which are the actual arguments,

argv[0] is always name of running program
See cmdlineargs.c

Exercise: Yoda-ize

Write a main() which prints the first two command line arguments
last but the rest in order

> gcc yodaize.c > a.out are you ready
> a.out ready are you
> a.out hi > a.out you need more patience
hi more patience you need
> a.out hi there > a.out that is the shadow of greed
hi there the shadow of greed that is
> a.out i am bored
bored i am

I Check argc for number of arguments
I argv[0] is always the program name (a.out or a.exe): ignore it
I Look for argv[1] and argv[2]; print them last
I Print argv[3], argv[4], ... first

-option

Manually handling command line args is good for simple programs

myprog input.dat output.out
myprog input.dat output.out options.opt

What about gcc or other complex programs?

gcc prog.c
gcc -o prog prog.c
gcc prog.c -o prog.c
gcc -o prog prog.c -lm -O3 -std=C99 -g -Wall -I ../include

This gets out of hand fast: use a library like GNU getopt.

Common uses of command line arguments

Instruct program to do
something multiple times

I int n = atoi(argv[1]);
I Converts string to int
I double n =

atof(argv[1]);
I Converts string to double
I See range_cmdline.c

Name one or more files on
which to operate

I Read from file
I Leave output in files
I Next topic: File I/O

> gcc range_cmdline.c
> a.out
usage: a.out start stop

start: starting integer
stop: ending integer

> a.out 1 5
1
2
3
4
5
> a.out 2 9
2
3
4
5
6
7
8
9

