CS 222: Aggregate Data, Pointers, File 1/0

Chris Kauffman

Week 5-1

Logistics

Reading

» Ch 8 (pointers)
» Ch 9 (filei/o)

Exam 2
Next Week Thursday

Homework

v

v

v

HW4 due tonight
HWS5 up tomorrow
Multidimensional arrays

Some string processing

Goals Today

Feedback

» More memory allocation

v

v

Structs and memory

v

Multidimensional Arrays
File 1/0

v

Midterm Feedback

» Will post online
» No major overhauls indicated

» Comments on time spent on HW

HW 4 Due Tonight

Advice

>

>

Don't need to allocate any memory for structs, only doubles

Make sure to allocate the right amount of memory, manual
inspection may lose points

Make sure to free() in appropriate problems
Favor square brace/array access

x[i] + y[i]

to pointer arithmetic

(xx) + (xy)
x=x+1; y=y+1;

Questions?

Composing Elements: Arrays of Structs

See solarsys.c

A struct with an array An array of structs
typedef struct{ planet_t solarsys[9];
char name[128]; double d5 = solarsys[5].dist;
double dist;
} planet_t; Later, structs with structs as
o elements
{

planet_t earth =
{"earth", 1.0};

Modifications to solarsys.c

1. Dynamically allocate an array of 8 planets; copy over the first
8 into this array and print the new system

2. Dynamically allocate space for a single planet. Copy Pluto into
that space and print its name and distance

3. Free the dynamically allocated space

Q: How does one dynamically allocate memory in C? Where does it
come from?

Code Vs Data

In solarsys.c we have a nice way to express the layout of some
data in code.

» This doesn’t happen very often in C, C++, Java, etc.
» |t happens a lot in Lisp, ML, Haskell, Python, etc.

Compose

Seen so far
» Structures with array fields
» planet_t with character array
» Arrays of structures
» planet_t solar_sys[9]
» Structures with struct fields
» planet_t with axis_t as a field
New
» Arrays of arrays (of arrays of ...)

» double matrix[4] [3];
» cubicle office[2] [3][2];

Multidimensional Access/Assign

Use multiple [1, one for each dimension of multi-D array

double matrix[4][3];

matrix[0] [0] = 1.0;
matrix[0] [1] = 10.0;
matrix[0] [2] = 100.0;
matrix[1][0] = 2.0;
matrix[3] [2] = 400.0;

double z = matrix[0][1] * 4;

Alternative: initialize whole thing, see matrix_init.c

Pointers to pointers (to pointers . ..

Can point to another pointer

int 1 = 1;
int *ip =
int **ipp
int ***xippp

&i;

= &ip;
= &ipp;
printf ("%d\n", *ip);

printf ("%d\n", **ipp);
printf ("%d\n", ***ippp);

Dynamically allocated matrix

What if we want the following:

Input matrix size: 8 2

El1 0 0: 0.0
El1 0 1: 0.1
El1 1 0: 1.0
El111: 1.1
E171: 7.1

i.e. read size and elements from user?
See matrix_dynamic_alloc.c for examples

» Modify to read rows/cols from user

Ragged Matrix

Not required to have every row the same length
» Not strictly a matrix then

» Can be useful: char **strs

BREAKTIME

Back in 15 minutes

Convenience

Going to work with files in a moment. Usually tell programs what
files to operate on the command line

gcc sin_sample.c -1m
1ls -1 read_planets.c
rm a.out sin_sample.c”

It's time to communicate with command line arguments

main unveiled

Simplest: int main(){
More common: int main(int argc, char **argv){

» What kind of a thing is argv?

Command Line Arguments

Passed to C programs through main.

argc how many, always 1 which is name of program
running

argv array of strings which are the actual arguments,
argv [0] is always name of running program

See cmdlineargs.c

Exercise: Yoda-ize

Write a main () which prints the first two command line arguments
last but the rest in order

> gcc yodaize.c > a.out are you ready

> a.out ready are you

> a.out hi > a.out you need more patience

hi more patience you need

> a.out hi there > a.out that is the shadow of greed
hi there the shadow of greed that is

> a.out i am bored
bored i am

Check argc for number of arguments
argv[0] is always the program name (a.out or a.exe): ignore it

Look for argv[1] and argv[2]; print them last

vV v vy

Print argv[3], argv[4], ... first

-option

Manually handling command line args is good for simple programs

myprog input.dat output.out
myprog input.dat output.out options.opt

What about gcc or other complex programs?

gcc
gcc
gcc
gcc

prog.c
-0 prog prog.c
prog.c -o prog.c

-0 prog prog.c -1lm -03 -std=C99 -g -Wall -I

This gets out of hand fast: use a library like GNU getopt.

../include

Common uses of command line arguments

Instruct program to do > gec range_cndline.c

something multiple times > a.out

)) usage: a.out start stop
> int n = at01(argv[1]); start: starting integer
» Converts string to int stop: ending integer

> a.out 15

» double n =

atof (argv[1]);
» Converts string to double
> See range_cmdline.c

a.out 2 9

Name one or more files on
which to operate

» Read from file
» Leave output in files
» Next topic: File I/O

© 00 N O WNV O WN -

