
CS 222: Pointers and malloc/free

Chris Kauffman

Week 4-2

Logistics

Reading

I Ch 8 (pointers)
I Review 6-7 as well
I Ch 9 (file i/o) next week

Feedback
50% Finished with CS 222

I Time to evaluate and adjust
as needed

I Anonymous feedback forms
distributed

HW 4 now up

I Due next week Tuesday
I More advanced struct, arrays
I Memory allocation

Goals

I Dynamic allocation
I malloc
I Casting
I sizeof

I Practice

Pointers

I What are they?
I How do we

I Define, Declare, Access, Assign

I What are the two interesting ops on pointers?
I How are arrays and pointers related?

Exercise: Pointer Max

void pointer_max(double *a, double *b, double *max);

If the number a points at is bigger than what b points at, set max
to what a points at. Otherwise set it to what b points at.

Examples

double x=7, y=4, max=99;

pointer_max(&x, &y, &max);
// max is now 7

x=-2;

pointer_max(&x, &y, &max);
// max is now 4

Remember Memory Layout

Stuff we’ve had so far is on the stack
What about that other part?

Stack and Heap

Stack
I Grows when functions get

called, shrinks when
functions finish

I Compiler knows how much
to shrink and grow stack

I For this function I need 2
ints and an array of 10
doubles

I 2*4 + 10*8 = 88 bytes

I Stack space is there for you
automatically

Heap

I For memory with size not
known at compile time

I Used for run-time allocation
I Read n from the user
I Allocate space for n

integers
I Programmer (you) must

manually manage heap space

I With help from libraries

malloc and free

malloc(n) Allocate n bytes somewhere on the heap
I used as void *p = malloc(n);
I p now points at memory on heap which can be

used
I Allocation may fail - not enough memory

free(p) Deallocate memory pointed to by p
I Memory available for further calls from malloc
I Gives errors if p doesn’t point to malloc’d

memory

Allocating Useful Stuff

Prototype: void *malloc(size_t size);
I size_t is an integer-like value (probably long on most

systems)
I Usually want int *, double *, planet_t *, not void *
I Need to figure out how many bytes required
I Use two C features for this: sizeof and casting

Casting

Force conversion of one type to another
Numerical int i = (int) 45.3 * 0.4432;

Pointer char *str = (char *) malloc(100);

Pointer planet_t *p = (planet_t *) malloc(100);

Gross double d = (double) ’H’;

Old School int ip = (int) &i;

Bad Bad double q = (double) str;

Compiler, I’m removing the safety net because it’s in the
way.

sizeof()

Like a function that returns number of bytes for a type
I sizeof(int) is # bytes an integer uses
I sizeof(planet_t) is # bytes an planet_t uses
I sizeof.c

malloc useful stuff

Full Malloc: use caste and sizeof()
See malloc.c

char *str = (char *) malloc(sizeof(char)*128);
double *arr = (double *) malloc(sizeof(double)*100);
planet_t *p = (planet_t *) malloc(sizeof(planet_t)*9);

Casting usually optional
Most compilers don’t care if you fail to caste

char *str = malloc(sizeof(char)*128);
double *arr = malloc(sizeof(double)*100);
planet_t *p = malloc(sizeof(planet_t)*9);

Demonstration: Return an Array of Integers

See get_ints.c

Fun things to try

See how much memory you can get: malloc_madness.c

free

Keep using malloc and eventually it wil fail: no memory left
I Use free to deallocate
I Important for long-running programs
I Memory leak: malloc, lose pointer, can’t free, program gets

bloated

Exercise: Array Slice

int * slice(int *iarr, int start, int len)

Creates a slice of an array that is independent from the original
I iarr is a pointer an array of integers
I start is where to start the slice
I len is how long the slice should be
I Return an array that is len long with elements copied from

iarr

Examples

int a[] = {0,1,2,3,4,5,6,7,8,9}; s = slice(a, 5, 3);
int *s; // a = 0 1 2 3 4 5 6 7 8 9

// s = 5 6 7
s = slice(a, 0, 10);
// a = 0 1 2 3 4 5 6 7 8 9 s = slice(a, 1, 6);
// s = 0 1 2 3 4 5 6 7 8 9 a[3] = 10

// a = 0 1 2 10 4 5 6 7 8 9
// s = 1 2 3 4 5 6

Exercise
double *sin_sample(double start, double stop,

double step, int *len);

Creates sample of sin(x) function on interval start to stop

Args/Behavior

I start beginning of interval

I stop end of interval

I step distance between sample
points

I *len pointer to length, set it

I Allocates space for array of
doubles

I Fills in the array with samples

I Sets the len pointer

Examples
int nsamp; double *v;
v = sin_sample(0,PI, PI/2,

&nsamp);
// v = {0.0, 1.0, 0.0};
// nsamp = 3;
free(v);
v = sin_sample(PI/2, 1.5*PI, PI/4,

&nsamp);
// v = {1.0, 0.7, 0, -0.7, -1};
// nsamp = 5;
free(v);
v = sin_sample(PI, PI, 0.1,

&nsamp);
// v = {0.0};
// nsamp = 1;

