
CS 222: Pointers and Manual Memory
Management

Chris Kauffman

Week 4-1

Logistics

Reading

I Ch 8 (pointers)
I Review 6-7 as well

Exam 1 Back Today
Get it in class or during office
hours later

HW 3 due tonight
Any questions?

HW 4 up tomorrow,

I Due next week
I More advanced struct, arrays
I Multidimensional arrays

Goals

I Exam 1 Feedback
I String Practice
I Pointers

Exam 1 Stats

Range Count
90 - 100 12
80 - 89 16
70 - 79 3
60 - 69 3
50 - 59 4
40 - 49 1

Stat Val R2014
Count 39 33
Min 45.00 43.64
Max 98.33 100.00
Range 53.33 56.34
Average 81.84 80.67
Median 86.67 83.64
StdDev 13.48 16.33

Strings as Input

scanf can read strings with %s
I Must have a character array of sufficient size
I Don’t use &

{
char buffer[1024];
scanf("%s",buf);

}

Q: How would determine if the string read is the string Millenium?

Oh, the bits you’ll smash

scantest.c: Let’s make some trouble
http://stackoverflow.com/questions/1345670/
stack-smashing-detected

http://stackoverflow.com/questions/1345670/stack-smashing-detected
http://stackoverflow.com/questions/1345670/stack-smashing-detected

Practice Program
wordguess.c

I A mystery word called answer
I Repeated prompting to user for guess word
I Check if guess word is correct
I End game is guess is correct
I Otherwise, reveal progressive characters of answer

Write this program for me

Required Elements

I Read a string using scanf()
I strcmp() is very useful

if(strcmp(answer, guess) == 0) /* is it the right word? */
I Loop, tracks number guesses
I Print single characters with printf()

Other Cool Functions in string.h

See stringlib.c
I Length : strlen()

I myint ← length(str)
I int l = strlen(str);

I Copy : strcpy()
I str1 ← str2
I strcpy(str1, str2);

I Concatenation : strcat()
I str1 ← str1 str2
I strcat(str1, str2);

A few Character Functions

In ctype.h: can be useful for checking conditions

int isupper(char c);
int islower(char c);
int isspace(char c);
...

int toupper(int c);
int tolower(int c);
...

Not really needed for HW: just check specifically for characters with
==.

Relation of *a and a[]

What is a versus what is c?

int a[10];
char c[5];

I A memory address
I Access a[4] means a + 4*sizeof(int)
I Access c[4] means c + 4*sizeof(char)
I Second half explicitly deal with memory locations

I int *ap; a pointer to memory which contains ints
I char *cp; a pointer to memory which contains chars

One common error: Passing array args

Some function on arrays

double arrfunc(int [] arr, int length);
double otherfunc(int arr[], int length);

Call function with an array

int ia[5] = {2, 2, 0, 3, 0};
double ans = arrfunc(ia, 5);

Call with bare name only
I No square braces

WRONG: arrfunc(ia[], 5);
I No size indication in square braces

WRONG: arrfunc(ia[5], 5);

Arrays are a Fixed Memory Address

What are a and c?

int a[10];
char c[5];

I A memory address
I Access a[4] means a + 4*sizeof(int)
I Access c[4] means c + 4*sizeof(char)
I More on sizeof after the break

Pointers

I A memory address
I A fundamental type in C, like int,char,double
I Point at a data type like int,char,double
I Can also be a void pointer - generic pointer
I Very unfortunate homonyms

I void fun(void); takes no args, returns nothing
I void pointer can actually point at stuff
I NULL pointer points at nothing
I Null character \0 ends strings

Question: Pointers are a data type. What should we discuss next?

Pointer Basics

Define Done for you
Declare Use a * in front of another type

int *intptr; // I point at ints
double *doubs; // I point at doubles
char *chars; // I point at chars
ze_struct *zs; // Well, you get the point

Access x = intptr; What type should x have?
Assign intptr = x;

Wait a minute. . . . what aren’t you telling me?

The Interesting Operations

& : Address Operator

I Applicable to any variable
I Produces memory address of

the variable
I Results in a pointer

int i = 2;
int *ptr = &i; // Point at i
int j = 3;
ptr = &j; // Point at j

I LHS must be a pointer
I RHS should be some variable

* : Dereference Operator

I Applicable to pointers
I Produce contents of pointer
I Results in pointed at type
I *ptr on RHS: access value

pointed at variable i
int i = 2;
int *ptr = &i;
int j = *ptr;

I *ptr on LHS: allows
assignment to pointed at
variable i
*ptr = 10;
if(i == 10){ printf("wow!"); }

See simplepointers.c

* and & are Inverse Operations

I f () and g() are inverse operations if

x = f (g(x)) = g(f (x))

I f (x) = x + 1 and g(x) = x − 1 are inverse functions
I Derivative and Integral are inverse operations

f ≈ Deriv(Integ(f)) ≈ Integ(Deriv(f))

I *var and &var are inverse operations
var == *(&var)
var == &(*var)

I For this to work, what type must var have?

The Pointer Play

Hot seat thespians act out the drama of C
Script in pointerplay.c

First Real Uses

Pointers as function arguments are interesting
I nonlocal_set.c

Remember how we can’t return more than one thing from a
function?

I Now you can: multiplereturns.c

Exercise

Write a function that swaps two integers
I swap_ints takes two integer pointers
I What does its prototype look like?
I How is the swap accomplished?

Relation of *ap and a[]
What are a and c?

int a[10];
char c[5];

I A memory address
I Square brace syntax is offset from that location

I Access a[4] means a + 4*sizeof(int)
I Access c[4] means c + 4*sizeof(char)

How about for pointers?

int *ap;
char *cp;

I Also a memory address
I Pointers also allow [] syntax

I Access ap[4] means a + 4*sizeof(int)
I Access cp[4] means c + 4*sizeof(char)

See arrayVptr.c

Differences of *ap and a[]

Array a[] A fixed memory location (stack or global memory)
I Can’t move the array around
I Can change elements of the array: a[1] = x;
I Usually points at more than one thing

Pointer *ap Only points at something else
I Can change where ap points: ap = &x;
I change data at location: *ap = x;
I change data at offset: ap[1] = x;
I May point at 1 thing or a whole array of things
I Must use context to tell. . .

Remember Memory Layout

Stuff we’ve had so far is on the stack
What about that other part?

Stack and Heap

Stack
I Grows when functions get

called, shrinks when
functions finish

I Compiler knows how much
to shrink and grow stack

I For this function I need 2
ints and an array of 10
doubles

I 2*4 + 10*8 = 88 bytes

I Stack space is there for you
automatically

Heap

I For memory with size not
known at compile time

I Used for run-time allocation
I Read n from the user
I Allocate space for n

integers
I Programmer (you) must

manually manage heap space

I With help from libraries

malloc and free

malloc(n) Allocate n bytes somewhere on the heap
I used as void *p = malloc(n);
I p now points at memory on heap which can be

used
I Allocation may fail - not enough memory

free(p) Deallocate memory pointed to by p
I Memory available for further calls from malloc
I Gives errors if p doesn’t point to malloc’d

memory

Allocating Useful Stuff

Prototype: void *malloc(size_t size);
I size_t is an integer-like value (probably long, 64-bit integer)
I Usually want int *, double *, planet_t *, not void *
I Need to figure out how many bytes required
I Use two C features for this: sizeof and casting

Casting

Force conversion of one type to another
Numerical int i = (int) 45.3 * 0.4432;

Pointer char *str = (char *) malloc(100);

Pointer planet_t *p = (planet_t *) malloc(100);

Gross double d = (double) ’H’;

Old School int ip = (int) &i;

Bad Bad double q = (double) str;

Compiler, I’m removing the safety net because it’s in the
way.

sizeof()

Like a function that returns number of bytes for a type
I sizeof(int) is # bytes an integer uses
I sizeof(planet_t) is # bytes an planet_t uses
I sizeof.c

malloc useful stuff

See malloc.c
I chars/string

char *str = (char *) malloc(sizeof(char)*100);

I doubles

double *arr = (double *) malloc(sizeof(double)*100);

I planet_t

planet_t *p = (planet_t *) malloc(sizeof(planet_t)*100);

Fun things to try

See how much memory you can get: malloc_madness.c

free

Keep using malloc and eventually it wil fail: no memory left
I Use free to deallocate
I Important for long-running programs
I Memory leak: malloc, lose pointer, can’t free, program gets

bloated

