
CS 222: Arrays, Strings, Structs

Chris Kauffman

Week 3-1

Logistics

Reading

I Ch 6 (arrays)
I Ch 7 (structs)

HW 2 & 3
I HW 2 due tonight
I Conditionals, loops, arrays,

natural log
I HW 3 up tomorrow, due

next week

Exam 1
I This Thursday
I Zyante Ch 1-6
I This week’s Material

Included

Exam Practice
Post problems tomorrow morning

Goals

I HW 2 Questions
I Arrays

HW 2 Questions

I Any to discuss?

Data Types

Define Now there’s a type, it looks like blah
Declare Here is a variable, it’s type is bleh
Access Element foo of variable bar has value . . .
Assign Element foo of variable bar gets value blip

Scalar Types

Only one element/value per variable
Define Done for you for int,double,char etc
Declare ??
Access ??
Assign ??

Aggregate Data: Two Kinds

Arrays collection of the same thing (homogeneous)
I Like vectors/matrices
I Indexed by number
I Elements accessed via array[index]

structs collection of different things (heterogeneous)
I A record
I Named elements (field)
I Elements accessed via mystruct.fieldname

Arrays

A block of memory
Define Built in
Declare type name[size];

Access x = name[index];

Alter name[index] = x;

See arraytypes.c

Initialize

Initial values are undefined - gabbledegook
Must initialize values, typically
I By hand
I By loop
I Immediate notation: {el1, el2, el3}
I By library call (later)

See array_init.c

Exercise: Price is Right

int guesses[] = {45, 22, 86, 37, 12, 13, 47};
int find_closest_guess(int actual_price){

...
}

I Use a set of loops and conditionals to determine the closest value in
guesses to actual_price that does not go over actual_price.

I Return the closest value from the function

I If all values in guesses are larger than actual_price, return -1

lila [w02-2-code]% gcc price_right.c
lila [w02-2-code]% a.out
Guesses: 45 22 86 37 12 13 47
Actual 42 closest_guess 37
Actual 46 closest_guess 45
Actual 22 closest_guess 22
Actual 10 closest_guess -1

Arrays as Function Arguments
Definitely can pass arrays as arguments

void print_doubs(double d[], int len){
int i;
for(i=0; i<len; i++){

printf("%2d: %lf\n",i,d[i]);
}
printf("\n");

}

int main(){
double my_doubs[] = {1.23, 4.56, 37.89, 3.21};
print_doubs(my_doubs, 4);

/* VERY COMMON ERROR: don’t use [] when passing */
print_doubs(my_doubs[], 4);
return 0;

}

Exercise

Define

int occurrences(int a[], int length, int key)

a an array of ints
length number of elements in a

key what to look for in a
returns how many times key occurs in a

int stuff[8] = {-2, 1, 1, 0, -1, 1, 0, 2};
int zeros = occurrences(stuff, 8, 0); /* 2 */
int ones = occurrences(stuff, 8, 1); /* 3 */
int tens = occurrences(stuff, 8, 10); /* 0 */

Arrays as Multiple Returns

Definitely can set array values; changes in the caller

void change_doubs(double d[], int len){
int i;
for(i=0; i<len; i++){

d[i] = len-i;
}
printf("\n");

}
int main(){

double my_doubs[] = {1.23, 4.56, 37.89, 3.21};
change_doubs(my_doubs, 4);
printf("%lf\n",my_doubs[1]);

}

Does this work for scalar int, double, char arguments?

Arrays as Function Returns

Definitely cannot return arrays from functions

/* Error! */
int [] someints(){

int x[3] = {1,2,3};
return x;

}

Try compiling arrayreturn.c
I Overcome this limitation next week

Arrays and the Stack: Be Careful

Uninitialized stack memory could be anything
See random_initialize.c

Common Misconceptions

I Arrays have a length but it is NOT stored anywhere implicitly
I Must use a local variable or constant to track length
I No way to ask what the length of an array is

I sizeof() DOES NOT do this

BREAKTIME

Back in 15 minutes

Goals

I Exam 1 Rules
I struct

Open Resource Exam Rules
Exam 1 time: 1 Hours and 15 Minutes

Can Use, physical or electronic

I Notes
I Textbook(s) (online ok)
I Editor
I Compiler
I IDE
I Authorized Docs
I Locally stored webpages
I Dictionary

Cannot Use
I General Internet Search
I Piazza/Discussion Board
I Chat/Texting
I Communication with anyone

but Instructor/Proctor

Notes
I Silence your devices
I Keep device screens visible to instructor
I If you aren’t sure of something, ask

An Instructive Example

Zyante: Iterating through an array example: Program that finds the
max item.
In w03-1-code/read_arrays_zyante.c
This example is interesting for several reasons
I User input into an array

scanf("%d", &(a[i]));
I Iteration converts 1-indexed loop to 0-indexed arrays
I Finds max element (best element, useful for HW)
I Stack allocated array based on local variable N

I Contrast this with

w03-1-code/read_arrays_zyante.c

struct: Heterogeneous Data

A block of memory with named fields
Define typdef struct {...} name_t;

Declare name_t var;

Access x = var.fieldname;

Alter var.fieldname = x;

See modernstruct.c

Declare struct

There now exists a data type that looks like
Important: Several syntax variants

Modern typdef struct {...} name;
I newstruct.c

Zyante typdef struct name_struct {...} name;
I newstruct.c

Old-school struct name {...};
I oldstruct.c

One-off struct {...} var;
I weirdstruct.c

OMG struct name {...}; typedef struct name
name_t;

Define: We’ll favor modern

typedef struct {
double x, y;
char color;
int shape;

} point_t;

Warning: standard libraries use Textbook and Old-school styles

Assigning Aggregate Data

Cannot assign whole arrays to one another
Can assign whole structs to one another

See aggregate_assign.c

Related
Cannot return an array from a function1

Can return a struct from a function

1You can return a pointer to an array, we’ll do this later; you can return a
pointer to a fixed size array but the syntax is an abomination

http://stackoverflow.com/questions/1453410/declaring-a-c-function-to-return-an-array

struct As Function Args and Return Values

Both are readily done: colors.c

/* A simple struct for an RGB color */
typedef struct {

double red;
double green;
double blue;

} color_t;

Returning an int vs struct
typedef struct { int a; double b;} mystruct;

Return an int

// return an int like this
int get_int(){

int a = 22;
return a;

}

// NOT like this
int get_int(){

int a = 22;
return int;

}

// and NOT like this
int get_int(){

int a = 22;
return int a;

}

Return a struct

// return a struct like this
mystruct get_struct(){

mystruct s = {.a=1, b=2.3 };
return s;

}

// NOT like this
mystruct get_struct(){

mystruct s = {.a=1, .b=2.3 };
return mystruct;

}

// and NOT like this
mystruct get_struct(){

mystruct s = {.a=1, b=2.3 };
return mystruct s;

}

Exercise
I Write a function bluer
I Takes two color_ structs
I Determines which struct has a higher blue field
I Returns that struct

/* A simple struct for an RGB color */
typedef struct {

double red;
double green;
double blue;

} color_t;

int main(){
color_t c1 = {.red=0.5, .green=0.7, .blue=0.1};
color_t c2 = {.red=0.6, .green=0.2, .blue=0.5};

color_t r = bluer(c1,c2);
/* should be same as c2 now */

}

Aggregate Data Gotchyas

I Arrays
Cannot assign whole arrays to one another
Cannot return an array from a function2

I structs
Can assign whole structs to one another
Can return a struct from a function

See aggregate_assign.c

2You can return a pointer to an array, we’ll do this later; you can return a
pointer to a fixed size array but the syntax is an abomination

http://stackoverflow.com/questions/1453410/declaring-a-c-function-to-return-an-array

Sharing Types

Can copy/paste struct definitions in every .c file that needs it
I Lots of code. . .
I 1 change breaks everything

Instead, put planet_t in "planet.h"

#include "planet.h"

Includes definitions in the right places

Composing Elements

See solarsys.c

A struct with an array

typedef struct{
char name[128];
double dist;

} planet_t;
...
{

planet_t earth =
{"earth", 1.0};

}

An array of structs

planet_t solarsys[9];
double d5 = solarsys[5].dist;

Later, structs with structs as
elements

Code Vs Data

In solarsys.c we have a nice way to express the layout of some
data in code.
I This doesn’t happen very often in C, C++, Java, etc.
I It happens a lot in Lisp, ML, Haskell, Python, etc.

So far

I � Comments
I � Statements/Expressions
I � Variable Types
I � Assignment
I � Basic Input/Output
I � Function Declarations
I � Conditionals (if-else)
I � Iteration (loops)
I � Aggregate data (arrays, structs, objects, etc)
I � Library System

Are we done?

