
CS 222: Control Flow (Conditionals and Iteration)

Chris Kauffman

Week 2-2

Logistics

Reading

I Ch 5 (iteration)
I Ch 6 (arrays)

Exam 1
I Next Week Thursday
I Zyante Ch 1-6
I This week’s Material

Included

Stack Demonstrations
I Will post a long example

Friday (haven’t had time
since Tuesday)

I First exercise reviews

HW 1 & 2
I Last day for HW 1 (-2 late

tokens)
I HW 2 up now
I Conditionals, loops, arrays,

natural log

Goals

I Function wrap-up
I Conditionals
I Iteration
I Basic arrays

Headers and Prototypes

Prototypes often stored in header files, something.h and used via
#include.
I HW 2 should do

#include "plane_design.h"

or something similar in most of your files
I Means "look in current directory for plane_design.h header"
I If you do

#include <plane_design.h>

will mean "look in system locations for plane_design.h" and
will probably not work

I At the top of your wireless.c file do
#include "wireless.h"

I etc.

Exercise: Swap?
try_swap.c: what is printed? Show why using the call stack.

/* Demonstration of call-by value and call stack */
#include <stdio.h>
void swap_ints(int a, int b){

int tmp = a;
a = b;
b = tmp;

}
int main(){

int x=20, y=50;
printf("x=%d y=%d\n",x,y);
swap_ints(x,y);
/* What gets printed here? */
printf("x=%d y=%d\n",x,y);
return 0;

}

Making Choices

Straightline code is about as interesting as Ikea instructions: rigid.

Simplest Form of if

Always do this;
if(condition)

sometimes do this;
Always do this;

Always;
if(condition){

sometimes this;
and this;
and this;

}
Always;

See if_test.c

CK’s preference - always use

if(...){
...
...

}

Do what works for you
I Or what your boss forces

you to do

Comparing things

= Assignment, NOT comparison
== Equality test
!= Inequality

< > Less / Greater
<= >= Less than equal / Greater than equal

See comparisons.c

Consequence and Alternative

Often have 2 cases, C provides nice syntax

Always;
if(cond){

do when true;
}
else{

do when false;
}
Always;

Boolean Combinations

To combine conditions
Test more than one thing at once

&& and
|| or
! not

See booleancomb.c

Truthy/Falsey
Which things are truthy and falsy in C again?

Combining if/elses

Nesting Arbitrary nesting of conditionals, nesting.c
Chaining Mutually exclusive cases, chaining.c

Comparison Gotchyas

Two very common errors

// Different meaning than intended
if(cond)

do me;
do me too;

always;

// Not accepted by compiler
if(0 <= i <= 10)

Exercises: Conditionals in Functions

Define an absolute value function for single integers

int a = abs(7); // 7
int b = abs(-2); // 2
int c = abs(0); // 0

Define an absolute minimum function for three real numbers

double x = absmin3(1.4, 0.5, -2.8); // 0.5
double y = absmin3(-1.4, 0.5, -0.1); // 0.1
double z = absmin3(-1.4, 5.5, -6.1); // 1.4

Iteration

Repeat something
I # of Repetitions is conditional
I Zyante Chapter 4

while

A way to repeat

always do this once;
while(this is true){

do this;
and this;

}
always do this once;

while.c

What does it do?
Modify to
I Print up to 20?
I Print to specified limit?
I Print only odds?
I Run forever?
I Ask for number of iterations?

Nesting

Loops can nest, works as expected: nestwhile.c
Modify to
I Print in a "matrixy" way
I Print lower triangle
I Print user-specified size

Looped input

Common to get input in a loop until quit command
I See sodaloop.c

A little sugar

Sometimes want to always do one iteration

Do this once;
do {

do this once, maybe more;
and do this once, maybe more;

} while(condition);

See guessing_game.c

The Other Loop
Counting loops extremely common, thus for is born

do this once;
for(Initialize; Condition; Update){

do this til condition is false;
do this til condition is false;

}
do this once;
...
do this once;
Initialize;
while(Condition){

do this til condition is false;
do this til condition is false;
Update;

}
do this once;

See for_v_while.c and nestfor.c

Detour: Compound assignment
I Frequently want increase or decrease the value of a variable
I Shorthand assignment operators for this purpose

double d = 10.0;

d = d + 5.0; // Increase d by 5
d += 5.0; // Also increase d by 5

d = d - 5.0; // Decrease d by 5
d -= 5.0; // Also decrease d by 5

d = d * 2.0; // Double d
d *= 2.0; // Also double

d = d / 2.0; // Halve d
d /= 2.0; // Also halve d

Works for numeric types: double, int, etc.

Increment and Decrement

I Very frequently need to increase or decrease a variable by 1
I Shorthand increment and decrement

int i = 0;

i = i + 1; // Increase i by 1
i++; // Same
i++; // Again
++i; // The same (in this case)

i = i - 1; // Decrease i by 1
i--; // Same
--i;

Where you see it

for(i=0; i<10; i++){
printf("Counting loop %d\n",i);

}

Detour: Why i++ and ++i?

Value of assignment is the assigned value

int i,j,k;
i = j = k = 0;

Post increment

int i=0
int j = i++;
// j is now 0, i is 1

Pre increment

int i=0;
int j = ++i;
// j is now 1, i is 1

Syntatic Sugar
Not strictly necessary but there for convenience (and confusion)

Composing elements

I Conditionals in Loops
I Loops in Conditionals
I Function calls in loops and conditionals
I Nested Conditionals
I Nested Loops

What’s missing?

Exercise
Classic: define factorial functions

factorial(n) = n! = 1× 2× · · · (n − 1)× n

I Write a while loop version
I Write a for loop version
I Write a main that tests the function

Examples:

int f3 = factorial_for(3); // 3*2*1 = 6
int f6 = factorial_while(6); // 6*5*4*3*2*1 = 720
int f4 = factorial_for(4); // 4*3*2*1 = 24

lila [w02-2-code]% gcc factorial.c
lila [w02-2-code]% a.out
input n: 12
12! = 479001600 (for)
12! = 479001600 (while)

Data Types

Define Now there’s a type, it looks like blah
Declare Here is a variable, it’s type is bleh
Access Element foo of variable bar has value . . .
Assign Element foo of variable bar gets value blip

Scalar Types

Only one element/value per variable
Define Done for you for int,double,char etc
Declare ??
Access ??
Assign ??

Aggregate Data: Two Kinds

Arrays collection of the same thing (homogeneous)
I Like vectors/matrices
I Indexed by number
I Elements accessed via array[index]

structs collection of different things (heterogeneous)
I A record
I Named elements (field)
I Elements accessed via mystruct.fieldname

Arrays

A block of memory
Define Built in
Declare type name[size];

Access x = name[index];

Alter name[index] = x;

See arraytypes.c

Initialize

Initial values are undefined - gabbledegook
Must initialize values, typically
I By hand
I By loop
I Immediate notation: {el1, el2, el3}
I By library call (later)

See array_init.c

Careful
Uninitialized stack memory could be anything
I See random_initialize.c

Exercise: Price is Right

int [] guesses = {45, 22, 86, 37, 1, 2, 47};
int find_closest_guess(int actual_price){

...
}

I Use a set of loops and conditionals to determine the closest value in
guesses to actual_price that does not go over actual_price.

I Return the closest value from the function

I If all values in guesses are larger than actual_price, return -1

lila [w02-2-code]% gcc price_right.c
lila [w02-2-code]% a.out
Guesses: 45 22 86 37 12 13 47
Actual 42 closest_guess 37
Actual 46 closest_guess 45
Actual 22 closest_guess 22
Actual 10 closest_guess -1

So far

I � Comments
I � Statements/Expressions
I � Variable Types
I � Assignment
I � Basic Input/Output
I � Function Declarations
I � Conditionals (if-else)
I � Iteration (loops)
I � Aggregate data (arrays, structs, objects, etc)
I � Library System

