CS 222: Functions and Conditionals

Chris Kauffman

Week 2-1

Logistics

Reading HW 1
For today Zyante » Due tonight by 11:59 pm on
» Ch 3 (functions) Blackboard
» Ch 4 (conditionals) » Don't forget directory
For Thursday structure: ckauffm2-hwl
» Ch 5 (iteration) » Don't forget ID.txt
» Ch 6 (arrays)
HW 2
Exam 1 » Up tomorrow morning, due
» Next Week Thursday next Tuesday
» Zyante Ch 1-6 » Conditionals, loops, possibly

) , . some arrays
» This week's Material Y

Included

HW 1

Spec
Questions?

http://www.cs.gmu.edu/~kauffman/cs222/hw1.html

Today

» X Comments

v

X Statements/Expressions

X Variable Types

X Assignment

X Basic Input/Output

O Function Declarations (Session 1)
O Conditionals (if-else) (Session 2)
O Iteration (loops)

v

v

v

v

v

v

v

O Aggregate data (arrays, structs, objects, etc)

v

X Library System

Goals

» Write functions

» Vague idea of low level execution
» Zyante Ch 3

» Many more details in Ch 3 than we'll discuss
Ex: Loops/Conditionals in functions

Ex: Pass by pointer

Read that material and try to understand
These will become clearer in the near future

vV vy Vvyy

Functions

» What's a function?
» Traditional Math?
» Programming?

» Why write code with functions?

Terminology
Function = Procedure = Method = Routine = Action Abstraction

Parts: Return Type, Name, Arguments, Body

return_type function_name(arg_typel argl, arg_type2 arg2){
body_line_1;
body_line_2;

return something_of_return_type;

}

Examples

int halve(int arg){ void print_greeting(){
lnt result = arg / 2’ printf("Welcome to");
return result; printf ("functionland\n.");

} }

Whitespace is arbitrary

Other frequent arrangments of functions

return_type function_name_2(arg_typel argl,
arg_type2 arg2){
body_line_1;
body_line_2;

return something_of_return_type;

¥

return_type
function_name_2(arg_typel argil,
arg_type2 arg2)
{
body_line_1;
body_line_2;

return something_of_return_type;

¥

Calling Functions
Calling = Invoking = Run Body with Actual Parameters

int halve(int arg){
int result = arg / 2;
return result;

}

int main(){
int n = 12;
int halved = halve(n);
printf("n is %d and half n is %d\n",
n,halved);

printf ("Halve 19 now: %d\n",halve(19));
return O;

> arg is the formal parameter to halve

» Takes on actual value 12 and 19 during main

Declarations vs Definitions
Prototypes Declare a function exists

» Return Type
» Name

» Number and Types of Arguments

int my_function(double x, int y, char c);

Definition of functions involve a body

int my_function(double x, int y, char c){
do_something;
do_something_else;
return an_int;

¥

Sample of Prototype then Definition

/* Get some prototypes of mathy stuffx*/
#include <math.h>

/* Prototype: name and types only */
int my_function(double x, int y, char c);

/* Definition of function */
int my_function(double x, int y, char c){
double result = x*2;
result = result + y;
result = result - ((int) c);
return (int) floor(result);

Exercises

Write this function

// Normalize a score by subtracting the mean
// and dividing by the standard deviation
double normalize(double score,

double mean,

double stddev);

// Return the positive root of the quadratic
// defined by a*x~2 + b*x + c; this is found
// by adding the sqrt of the discriminat

// in the quadratic equation rather than

// subtracting it

double pos_root(double a, double b, double c);

Declaration and Definition may be in different files

Often divide function declaration of functions into Header files (.h)

and Implementation files (.c).

Declaration numerical.h

// Example header file
#ifndef NUMERICAL_H
#define NUMERICAL 1

// Return half the argument given
int halve(int arg);

// Normalize a score by subtracting the mean
// and dividing by the standard deviation
double normalize(double score,

double mean,

double stddev);

// Return the positive root of the quadratic
// defined by a*(x*x) + b*x + c; this is found
// by adding the sqrt of the discriminat

// in the quadratic equation rather than

// subtracting it

double pos_root(double a, double b, double c);

#endif

Definitions in numerical.c

#include <math.h>
#include "numerical.h"

int halve(int arg){
int result = arg / 2;
return result;

}

double normalize(double score,
double mean,

double stddev){

return (score - mean) / stddev;

}

double pos_root(double a, double b, double c){
double discriminant = b*b - 4*axc;
double rootDiscr = sqrt(discriminant);
double rootl = (-b + rootDiscr) / (2 * a);
return rootl;

}

A very special function: main

Where the action begins - a
time-honored C convention

>

>

Programs have a main
Libraries (usually) don't

Notice: numerical.c has
no main()

Does not comprise a
program, only a library of
functions

numerical_main.c does
have a main but not
definitions of numerical
functions, only header
numerical.h

Compile all together

> gcc numerical.c
(.text+0x20):

undefined reference to ‘main’
collect2: error:

1d returned 1 exit status

> gcc numerical_main.c
/tmp/ccIqZXiy.o: In function ‘main’:
numerical_main.c: (.text+0x15):
undefined reference to ‘halve’
numerical_main.c: (.text+0x39):
undefined reference to ‘halve’
collect2: error:
1d returned 1 exit status

> gcc numerical.c numerical_main.c
> ./a.out

n is 12 and half n is 6

Halve 19 now: 9

Input a b c: 12 3 -5

Pos root is 0.5325

Returning Things

With return, see returns.c

» What about 2 or 3 or more return values?

Blocks and Scope

Blocks defined by { }

» Groups code together
» Defines a scope
» Variable visibility
» Hierarchy of scopes
» Contrast: Python

What can a function see?
Functions have their own scope

» Arguments
» Global data/functions
» |ts block variables

See scopes.c, scopes?2.c, badscopes.c

Call Stack

Functions call functions call functions
» Compiler/Runtime keeps track

» Easy to draw

Under the Hood

Functions are translated to memory manipulations

» Caller £ is executing

v

Callee g is being called by f

v

Caller £: push args onto stack, save registers, jump to g

v

Callee g: execute, put answer on stack, jump back (to f)

v

Caller £: restore registers, grab answer, continue

Demonstrate with callstack.c

The Stack

Stack Pointer

top of stack

A spot in memory

» Data for each

function call
» Arguments, locals, stac]EDfrrame
return value Dsrj\évgjﬁlﬁf

Locals of
Orawline

Return Address

Parameters far
DOrawline

Locals of
DrawSguare

Feturn Address

Parameters far
DrawSguare

Memory

stack frame
far

Diraweline

subroutine

Inlining

Jumping around can be expensive
» Instructions to save registers, push args
» Inline means copy definition there
inline int max(int a, int b) {
return a > b ? a : b;
}
» Suggests compiler inline a function
» No guarantees of speed
» Compiler may not honor

» May inline without you saying it

How long?

Using functions is good, right?
» How do you decompose a large problem into functions?
» What merits a function?
» How long should a function be?
Try Code Complete by Steve McConnel
» Online At GMU Library

This is a quality of people, not machines.

http://proquest.safaribooksonline.com/book/software-engineering-and-development/0735619670/high-quality-routines/how_long_can_a_routine_bequestion_mark

BREAKTIME

Back in 15 minutes

Goals

v

Zyante Chapter 4

Conditionals

v

v

Comparing Numbers

v

switch/case (maybe...)

Making Choices

AAAAAAAA

Straightline code is about as interesting as lkea instructions: rigid.

Simplest Form of if

Always do this;

if (condition)
sometimes do this;

Always do this;

Always;

if (condition){
sometimes this;
and this;
and this;

b
Always;

See if_test.c

Using Blocks

CK'’s preference - always use

if (.. .){

b

Do what works for you

» Or what your boss forces you to do

Comparing things

= Assignment, NOT comparison
== Equality test
I=Inequality
< > Less / Greater
<= >= Less than equal / Greater than equal

See comparisons.c

Consequence and Alternative

Often have 2 cases, C provides nice syntax

Always;
if (cond){

do when true;
}
else{

do when false;
}
Always;

Boolean Combinations

To combine conditions
Test more than one thing at once

&& and
|| or
I not

See booleancomb.c

Truthy/Falsey
Which things are truthy and falsy in C again?

Combining if elses

Nesting Arbitrary nesting of conditionals, nesting.c

Chaining Mutually exclusive cases, chaining.c

Gotchyas

Two very common errors

// Different meaning than intended
if (cond)

do me;

do me too;
always;

// Not accepted by compiler
if(0 <= i <= 10)

Exercises

Define an absolute value function for single integers

int a = abs(7); // 7
int b = abs(-2); // 2
int ¢ = abs(0); // O

Define an absolute minimum function for three real numbers

double x = absmin3(1.4, 0.5, -2.8); // 0.5
double y = absmin3(-1.4, 0.5, -0.1); // 0.1
double z = absmin3(-1.4, 5.5, -6.1); // 1.4

Note on true/false

C standard does allow for use of keywords true and false with
type bool by including the stdbool.h header.

booleancheck.c:

/* Demonstrate the use of stdbool.h to define the names tru
false */

#include <stdio.h>

#include <stdbool.h>

int main(){
bool t = true; /* defined to be 1 %/
bool f = false; /* defined to be 0 */
printf ("%d %d\n",t,f);

}

Composing

v

Conditionals are if/else, switch/case

Conditionals inside functions

v

Conditionals inside other conditionals
> Nesting if/else
» Nesting switch/case

v

Functions inside conditionals?
» Sort of - preprocessor as #IF

v

Functions inside functions?

v

» Go-go gadget gcc

Wrap-Up

» X Comments

v

X Statements/Expressions
X Variable Types

X Assignment

X Basic Input/Output

X Function Declarations
X Conditionals (if-else)

O Iteration (loops)

v

v

v

v

v

v

v

O Aggregate data (arrays, structs, objects, etc)
» Sans memory ops

» X Library System
Exam 1 Next Week

