
CS 222: Functions and Conditionals

Chris Kauffman

Week 2-1

Logistics

Reading
For today Zyante
I Ch 3 (functions)
I Ch 4 (conditionals)

For Thursday
I Ch 5 (iteration)
I Ch 6 (arrays)

Exam 1
I Next Week Thursday
I Zyante Ch 1-6
I This week’s Material

Included

HW 1
I Due tonight by 11:59 pm on

Blackboard
I Don’t forget directory

structure: ckauffm2-hw1
I Don’t forget ID.txt

HW 2
I Up tomorrow morning, due

next Tuesday
I Conditionals, loops, possibly

some arrays

HW 1

Spec
Questions?

http://www.cs.gmu.edu/~kauffman/cs222/hw1.html

Today

I � Comments
I � Statements/Expressions
I � Variable Types
I � Assignment
I � Basic Input/Output
I � Function Declarations (Session 1)
I � Conditionals (if-else) (Session 2)
I � Iteration (loops)
I � Aggregate data (arrays, structs, objects, etc)
I � Library System

Goals

I Write functions
I Vague idea of low level execution
I Zyante Ch 3

I Many more details in Ch 3 than we’ll discuss
I Ex: Loops/Conditionals in functions
I Ex: Pass by pointer
I Read that material and try to understand
I These will become clearer in the near future

Functions

I What’s a function?
I Traditional Math?
I Programming?

I Why write code with functions?

Terminology
Function ≡ Procedure ≡ Method ≡ Routine ≡ Action Abstraction

Parts: Return Type, Name, Arguments, Body

return_type function_name(arg_type1 arg1, arg_type2 arg2){
body_line_1;
body_line_2;
...
return something_of_return_type;

}

Examples

int halve(int arg){
int result = arg / 2;
return result;

}

void print_greeting(){
printf("Welcome to");
printf("functionland\n.");

}

Whitespace is arbitrary
Other frequent arrangments of functions

return_type function_name_2(arg_type1 arg1,
arg_type2 arg2){

body_line_1;
body_line_2;
...
return something_of_return_type;

}

return_type
function_name_2(arg_type1 arg1,

arg_type2 arg2)
{

body_line_1;
body_line_2;
...
return something_of_return_type;

}

Calling Functions
Calling ≡ Invoking ≡ Run Body with Actual Parameters

int halve(int arg){
int result = arg / 2;
return result;

}

int main(){
int n = 12;
int halved = halve(n);
printf("n is %d and half n is %d\n",

n,halved);

printf("Halve 19 now: %d\n",halve(19));
return 0;

}

I arg is the formal parameter to halve

I Takes on actual value 12 and 19 during main

Declarations vs Definitions
Prototypes Declare a function exists

I Return Type
I Name
I Number and Types of Arguments

int my_function(double x, int y, char c);

Definition of functions involve a body

int my_function(double x, int y, char c){
do_something;
do_something_else;
...;
return an_int;

}

Sample of Prototype then Definition

/* Get some prototypes of mathy stuff*/
#include <math.h>

/* Prototype: name and types only */
int my_function(double x, int y, char c);

/* Definition of function */
int my_function(double x, int y, char c){

double result = x*2;
result = result + y;
result = result - ((int) c);
return (int) floor(result);

}

Exercises

Write this function

// Normalize a score by subtracting the mean
// and dividing by the standard deviation
double normalize(double score,

double mean,
double stddev);

// Return the positive root of the quadratic
// defined by a*x^2 + b*x + c; this is found
// by adding the sqrt of the discriminat
// in the quadratic equation rather than
// subtracting it
double pos_root(double a, double b, double c);

Declaration and Definition may be in different files
Often divide function declaration of functions into Header files (.h)
and Implementation files (.c).

Declaration numerical.h

// Example header file
#ifndef NUMERICAL_H
#define NUMERICAL 1

// Return half the argument given
int halve(int arg);

// Normalize a score by subtracting the mean
// and dividing by the standard deviation
double normalize(double score,

double mean,
double stddev);

// Return the positive root of the quadratic
// defined by a*(x*x) + b*x + c; this is found
// by adding the sqrt of the discriminat
// in the quadratic equation rather than
// subtracting it
double pos_root(double a, double b, double c);

#endif

Definitions in numerical.c

#include <math.h>
#include "numerical.h"

int halve(int arg){
int result = arg / 2;
return result;

}

double normalize(double score,
double mean,
double stddev){

return (score - mean) / stddev;
}

double pos_root(double a, double b, double c){
double discriminant = b*b - 4*a*c;
double rootDiscr = sqrt(discriminant);
double root1 = (-b + rootDiscr) / (2 * a);
return root1;

}

A very special function: main

Where the action begins - a
time-honored C convention
I Programs have a main
I Libraries (usually) don’t
I Notice: numerical.c has

no main()
I Does not comprise a

program, only a library of
functions

I numerical_main.c does
have a main but not
definitions of numerical
functions, only header
numerical.h

I Compile all together

> gcc numerical.c
(.text+0x20):

undefined reference to ‘main’
collect2: error:

ld returned 1 exit status

> gcc numerical_main.c
/tmp/ccIqZXiy.o: In function ‘main’:
numerical_main.c:(.text+0x15):

undefined reference to ‘halve’
numerical_main.c:(.text+0x39):

undefined reference to ‘halve’
collect2: error:

ld returned 1 exit status

> gcc numerical.c numerical_main.c
> ./a.out
n is 12 and half n is 6
Halve 19 now: 9
Input a b c: 12 3 -5
Pos root is 0.5325

Returning Things

With return, see returns.c
I What about 2 or 3 or more return values?

Blocks and Scope

Blocks defined by { }

I Groups code together
I Defines a scope

I Variable visibility
I Hierarchy of scopes
I Contrast: Python

What can a function see?
Functions have their own scope
I Arguments
I Global data/functions
I Its block variables

See scopes.c, scopes2.c, badscopes.c

Call Stack

Functions call functions call functions
I Compiler/Runtime keeps track
I Easy to draw

Under the Hood

Functions are translated to memory manipulations
I Caller f is executing
I Callee g is being called by f
I Caller f: push args onto stack, save registers, jump to g
I Callee g: execute, put answer on stack, jump back (to f)
I Caller f: restore registers, grab answer, continue

Demonstrate with callstack.c

The Stack

A spot in memory
I Data for each

function call
I Arguments, locals,

return value

Memory

Inlining

Jumping around can be expensive
I Instructions to save registers, push args
I Inline means copy definition there

inline int max(int a, int b) {
return a > b ? a : b;

}
I Suggests compiler inline a function
I No guarantees of speed
I Compiler may not honor
I May inline without you saying it

How long?

Using functions is good, right?
I How do you decompose a large problem into functions?
I What merits a function?
I How long should a function be?

Try Code Complete by Steve McConnel
I Online At GMU Library

This is a quality of people, not machines.

http://proquest.safaribooksonline.com/book/software-engineering-and-development/0735619670/high-quality-routines/how_long_can_a_routine_bequestion_mark

BREAKTIME

Back in 15 minutes

Goals

I Zyante Chapter 4
I Conditionals
I Comparing Numbers
I switch/case (maybe. . .)

Making Choices

Straightline code is about as interesting as Ikea instructions: rigid.

Simplest Form of if

Always do this;
if(condition)

sometimes do this;
Always do this;

Always;
if(condition){

sometimes this;
and this;
and this;

}
Always;

See if_test.c

Using Blocks

CK’s preference - always use

if(...){
...
...

}

Do what works for you
I Or what your boss forces you to do

Comparing things

= Assignment, NOT comparison
== Equality test
!= Inequality

< > Less / Greater
<= >= Less than equal / Greater than equal

See comparisons.c

Consequence and Alternative

Often have 2 cases, C provides nice syntax

Always;
if(cond){

do when true;
}
else{

do when false;
}
Always;

Boolean Combinations

To combine conditions
Test more than one thing at once

&& and
|| or
! not

See booleancomb.c

Truthy/Falsey
Which things are truthy and falsy in C again?

Combining if elses

Nesting Arbitrary nesting of conditionals, nesting.c
Chaining Mutually exclusive cases, chaining.c

Gotchyas

Two very common errors

// Different meaning than intended
if(cond)

do me;
do me too;

always;

// Not accepted by compiler
if(0 <= i <= 10)

Exercises

Define an absolute value function for single integers

int a = abs(7); // 7
int b = abs(-2); // 2
int c = abs(0); // 0

Define an absolute minimum function for three real numbers

double x = absmin3(1.4, 0.5, -2.8); // 0.5
double y = absmin3(-1.4, 0.5, -0.1); // 0.1
double z = absmin3(-1.4, 5.5, -6.1); // 1.4

Note on true/false

C standard does allow for use of keywords true and false with
type bool by including the stdbool.h header.

booleancheck.c:

/* Demonstrate the use of stdbool.h to define the names true and
false */

#include <stdio.h>
#include <stdbool.h>

int main(){
bool t = true; /* defined to be 1 */
bool f = false; /* defined to be 0 */
printf("%d %d\n",t,f);

}

Composing

I Conditionals are if/else, switch/case
I Conditionals inside functions
I Conditionals inside other conditionals

I Nesting if/else
I Nesting switch/case

I Functions inside conditionals?
I Sort of - preprocessor as #IF

I Functions inside functions?
I Go-go gadget gcc

Wrap-Up

I � Comments
I � Statements/Expressions
I � Variable Types
I � Assignment
I � Basic Input/Output
I � Function Declarations
I � Conditionals (if-else)
I � Iteration (loops)
I � Aggregate data (arrays, structs, objects, etc)

I Sans memory ops

I � Library System

Exam 1 Next Week

