
CS 222: Intro

Chris Kauffman

Week 1-1

Goals

I Motivate study of C, esp. for engineers
I Give an idea of C as a language
I Overview of course mechanics

Who I expect You are

EE and ECE Majors
Required down the line for
I ECE 445 - Computer Organization
I ECE 447 - Single-Chip Microcomputers
I ECE 465 - Computer Networking Protocols

BENG Majors

I Concentration in Biomedical Signals and Systems
I Concentration in Bioengineering Healthcare Informatics
I Concentration in Bioengineering Pre-health

CS Majors who are confused, crazy, or desperate
Am I right?

Motivation

You just have to know C. Why? Because for all practical
purposes, every computer in the world you’ll ever use is a
von Neumann machine, and C is a lightweight, expressive
syntax for the von Neumann machine’s capabilities.
–Steve Yegge, Tour de Babel

https://sites.google.com/site/steveyegge2/tour-de-babel

Von Neumann Machine

Traditionally 3 parts
Processing arithmetic and logic

I Wires/gates that accomplish fundamental ops
I +, -, *, AND, OR, etc.
I Modern CPUs use registers: special fast memory

Control where and what to do next
I Special register indicating next instruction
I Typically memory address of instruction

Memory for remembering stuff
I Giant array of bits/bytes
I Accessible by number

Input/Output for the humans
I Not in the original, but pretty essential
I Special memory locations

Insights to Von Neumann

Really no difference between "programs" and "data" on the
computer
I They’re all electrons at some point
I Change data, change program
I Will be important to understand memory allocation, dreaded

pointers

Low Languages

I Binary Opcodes
I 1’s and 0’s, represent the digital signal of the machine
I Each code corresponds to an instruction, possibly also a

memory location

I Assembly
I Tiny bit more readable than binary
I Directly translated to binary using a program
I Specific to each CPU - close to the machine

An Example

HEXADECIMAL ASSEMBLY
0: 55 = 0101 0101 push %ebp
1: 89 e5 mov %esp,%ebp
3: 83 e4 f0 and $0xfffffff0,%esp
6: 83 ec 10 sub $0x10,%esp
9: c7 04 24 00 00 00 00 movl $0x0,(%esp)

10: e8 fc ff ff ff call 11 <main+0x11>
15: c9 = 1100 1001 leave
16: c3 = 1100 0011 ret

Looks like fun, right? (CS 262, ECE 445)

Another Example: MIPS
MIPS from CS 367 (?)

500: add s1, s2, s3 1000: 6
501: sub s1, s2, s3 1001: 0
502: lw s1, s2 1002: 0
503: add s3, s1, s2 1003: 2
504: sw s1, s3 1004: 0
505: add s2,s1,s2 1005: 0
506: j 508 1006: 10
507: bne s1, s2, 502 1007: 10
508: beq s2, s3, 507 1008: 0

...

Initial state
I s1 = 0
I s2 = 1000
I s3 = 4
I Control = 500

Why C is around

Bare Metal

Pure Abstraction

Wires

VHDL

Binary
Opcodes

Assembly C
C++, D

Java

Python, JS
Ruby, Shell

Prolog, Lisp
ML,Haskell

Bread
Board

Img Source: http://bpmredux.wordpress.com/

I Save you from assembly
I Abstract from a specific

CPU so programs can be
portable

I Provide programmer
convenience

I More Readable
I Software design easier

I Stay close to the machine

http://bpmredux.files.wordpress.com/2012/03/man-vs-machine.jpg
http://bpmredux.wordpress.com/

Thoughts
In C, more than any other language I’ve ever used, it pays to tie
your thinking to the machine, not the abstractions.
In C you can
I Get the memory address of any variable or function
I Add, store, and mangle those addresses
I Get memory by entering a function
I Release memory by finishing a function
I Explicitly request (malloc) and clean up (free) memory
I Ask for size of types in memory units (sizeof) during

allocation
I Ignore types of variable (integer, real, character, etc)
I Use arrays and addresses interchangeably

You must do many of the above to get work done in C. Knowledge
of how the underlying target machine works, at least generally, is
essential.

What I’d Use C For

I wouldn’t use C unless I am . . .
I Forced to by my boss (most frequent reason)
I Coding a computationally intensive part
I In need of very fine control of memory
I In need of lots of bit operations
I Running my app everywhere

I From main frame to smart watch

I Initially creating another PL (Python, Matlab, Java)
I Writing an operating system
I Am feelig very masocistic

Another’s Thoughts

Both early Unix and C compilers had simple structures,
are easy to port, require few machine resources to run,
and provide about 50%–80% of what you want from an
operating system and programming language.
–Richard Gabriel, The Rise of “Worse is Better”

http://www.stanford.edu/class/cs240/readings/worse-is-better.html

Another Motivation

You also have to know C because it’s the language that
Unix is written in, and happens also to be the language
that Windows and virtually all other operating systems
are written in, because they’re OSes for von Neumann
machines, so what else would you use? Anything
significantly different from C is going to be too far
removed from the actual capabilities of the hardware to
perform well enough, at least for an OS - at least in the
last century, which is when they were all written.
–Steve Yegge, Tour de Babel

https://sites.google.com/site/steveyegge2/tour-de-babel

An Operating System is. . .

The Many Unices

Unix

Unix means to me
I Certain set of interfaces to the machine
I Access many parts of the machine via C language and libraries
I Access many parts of machine via a command shell

I assume

Many of you will have to do a little bit-wrangling in your time
I Low-level manipulation of memory
I Interface a device of some type

C on Unix commonly used

Preconditions

You should have programming experience.
I CS 112 or equivalent
I Vaguely remember what things like source code, functions,

loops, maybe arrays/lists might be
Also you must be able to
I Read and write (English)
I Do arithmetic
I Browse the web
I Install programs
I Think, slowly and patiently

Outcome Expectations

After this class After some years in the wild

Real Software Projects. . .

Take lots of cooperation, like any other engineering effort

Daily Course Mechanics

Meet Tuesday/Thursday Evening
4:30-5:45 Lecture/discussion part 1
5:45-6:00 Break (eat something, please!)
6:00-7:10 Lecture/discussion part 2

Syllabus

Tons of info on
I Grading
I Assignment submission
I Policies (late work, etc.)
I Schedule

Programming Assignments

I 7 of them during the semester
I Must do all, no drops

I 42% of you grade
I 2-3 Problems covering latest material
I Submit to blackboard, 11:59 p.m. Tuesdays

I Intention: work over the weekend
I Bring questions to Tuesday class
I Exams are Thursdays
I Objections now

Exams

2 midterm exams during semester
I 1 hour 15 min lecture
I 15 minute review
I 15 minute break
I Take exam ≈ 1 hour

1 final exam
I Last session (a Tuesday)
I Comprehensive
I Must get 50% or better to pass the class

All exams open resource

Cheating

Don’t cheat
I Easy to catch
I Pain for you, Pain for me (makes me ornery)
I If you don’t’ get caught, you’ll still suck at programming
I What is cheating in this programming class?

Participation

I Each session, front 2 rows are hot seats
I Chance to earn participation extra credit
I Just try: answer questions, give feedback
I Up to 3% overall bonus
I Don’t want/need participation, sit elsewhere

Slides and Demo Code

I Will try to make slides available before class
I Slides always available sometime after class
I Slides are not much good without accompanying conversation
I Demo code is often relevant to HW problems

Textbook

Zyante’s Programming C
I Available here: https:

//zybooks.zyante.com/#/zybook/GMUCS222Summer2015/
I Cost around $48
I Required exercises: worth 3% of grade
I Registration code: GMUCS222Summer2015

https://zybooks.zyante.com/#/zybook/GMUCS222Summer2015/
https://zybooks.zyante.com/#/zybook/GMUCS222Summer2015/

Your Teaching Team

Chris Kauffman Instructor
I Mail: kauffman@cs.gmu.edu
I Office: Engineering 5341
I Hours: Plan 3-4pm Tue/Thu
I Other times preferable?

Phe Hung Le Grader
I NOT a teaching assistant
I Grading questions only, no general questions
I ple13@masonlive.gmu.edu

BREAKTIME

Back in 15 minutes
Hot seats: Come up front if you want some love

Goals

I Setting up your environment
I A few tools
I Overview of some elements in C
I May not finish today

Ahead of Time Translation ≡ Compilation

Machine doesn’t speak C
I What language does it speak?

Need a go-between

Setup Goal 1: Get a Compiler

GNU Compiler Collection: gcc
I Includes C compiler
I Free
I Widely used

Other options?
http://en.wikipedia.org/wiki/C_compiler#C_compilers
I Not used in our class
I Who would write a compiler?

http://en.wikipedia.org/wiki/C_compiler#C_compilers

Setup Goal 2: Get a Terminal

I A lovely, uncomplicated way to talk to your machine
I Type a command, watch what happens
I REPL (sort of)

Getting A Unix Environment

See Homepage->Course Content->Setting up your Environment
Windows Set up with Cygwin (unixy environment)

Mac OS X Terminal.app and getting gcc
Linux I’ll assume you know what you’re doing

Alternatives
Mingw partial unix for windows

Virtualbox Run a full OS in a single window
SSH Log into school machines, work only on the terminal

Windows cmd If you are a masocist.. still need a compiler

In Class Terminal

I’ll use a virtual machine
I Windows on the laptop
I Linux in the VM
I Terminals in linux

Sometimes use Cygwin terminals

A Profound Decision: Text Editor

Programs are text files
I In our case with .c at the end

We’ll be editing text files
I You need to pick a text editor

Setup Goal 3: Get a Text Editor

Many of them, list a few good ones in Setting up your Environment

jEdit Available on all platforms, built by programmers for
programmers, intuitive, colorful, reasonable power,
and free.

NotePad++ Windows only, free software, many students swear by
it.

TextPad Windows only, free for eval, pay to keep, solid editor
for programming and what I used when forced to use
only Windows tools

TextMate Mac only, nonfree, award-winning.

http://www.jedit.org/
http://www.textpad.com/download/index.html
http://macromates.com/

Tools that Grow

Jedit Emacs

Tools for the Art

Jedit Emacs

In Class Editing

I’ll use emacs, sometimes cygwin
I I’m an emacs person
I Use what makes you productive

Environment Setup

Set up your environment - click link to see instructions
Once finished, should at least be able to compile and run

lila [example-code]% gcc hello.c
lila [example-code]% ./a.out
Hello World
lila [example-code]%

On Windows

lila [example-code]% gcc hello.c
lila [example-code]% ./a.exe
Hello World
lila [example-code]%

http://www.cs.gmu.edu/~kauffman/cs222/setup/setup.html

Hello World

hello.c is a file containing the following program

#include <stdio.h>
int main() {

printf("Hello World\n");
}

In w01-1-code.zip

A note on IDEs:

From setup.html:

We’ll be focusing on learning the steps to produce
programs: editing, compiling, debugging, running on the
terminal. Integrated Development Environments (IDEs)
like Microsoft Visual Studio, Apple’s XCode, and Eclipse
will be a major hindrance to this effort as they hide many
of those details. Those tools have their place for
professional software engineers who can dive into the
details if the need arises, but since we’re learning this stuff
the first time, we need to be concerned with such details.
To that end, no help will be given diagnosing problems in
an IDE. Stick to a text editor and the gcc command line
interface.

Tour of C

I Look at first textbook program
I See some features of C
I Revisit them in more detail over next few weeks

Every Programming Language

Look for the following
I � Comments
I � Statements/Expressions
I � Variable Types
I � Assignment
I � Basic Input/Output
I � Function Declarations
I � Conditionals (if-else)
I � Iteration (loops)
I � Aggregate data (arrays, structs, objects, etc)
I � Library System

First Textbook Program: salary.c

/* From Zyante Programming C Ch 2.15 w/ modifications
Calculate age in days based on input, assumes 365 day years

compile: gcc age.c
run on mac: a.out
run on win: a.exe

*/

#include <stdio.h>

int main(void) {
int userAgeYears = 0;
printf("Enter your age in years: \n");
scanf("%d", &userAgeYears);

// Declare anywhere
int userAgeDays = userAgeYears * 365;
printf("You are %d days old.\n", userAgeDays);
return 0;

}

Comments

I Removed by compiler
I There to help you remember what you were thinking last year
I There to help the poor bastard who has to work on your

terrible code when you move on to greener pastures
I Two allowed syntaxes

/* Comment */
// Comment

/* Traditional C comment which can span multiple lines, and
be as verbose as you like. Everything between the
symbols is ignored */

// A newer comment syntax introduced by C++, only comments
// to the end of the line so make sure that the symbols
// appear at the beginnine of each line

Commenting/Uncommenting

All text editors worth their salt can
I Comment a region of program
I Uncomment a region of a program

This is incredibly useful during program development.
I Try something and find it doesn’t work
I Comment it out and try something else
I Still have the first way available

Learn how your editor does it
JEdit Install TextTools Plugin, Toggle Range Comment

Emacs comment-region uncomment-region

Variable Types
Integer like 0, 1, 15, -32, 32456

I Important: int as in int x = 32;
I Less : long, short, long int, long long

Real like 0.0, 0.5, -42.378, 5.34e-13
I Important: double as in double x = 1.234;
I Less often but sometimes: float

Character like c, Hello World, Wouldn’t\nIt\nBe\nNice?
I Important: char as in char x = ’c’;
I Important: char * as in

I char *x = "Hello World";
I Important: char x[] as in

I char x[] = "Hello World";
I Observation: Character data sucks in C

Boolean like true and false
I ???

Nothing huh?
I Important: void

Declare then Use

Must declare variables before using and give them a type

Right

int main(){
int x = 4;

}

int main(){
int x;
x = 4;

}

Wrong

int main(){
x = 4;

}

int main(){
x = 4;
int x;

}

Historical Note

Old C

int main(){
int x, y;
double d;

x = 4;
y = x + 2;
d = 12.34;

}

New C (C99/C11)

int main(){
int x;
x = 4;
int y = x + 2;

double d;
d = 12.34;

}

A Lesson

All languages change
I New words enter English (e.g. truthiness, selfie)

New ideas enter PLs
I C is changing
I Very slowly compared to other PLs

Gotchya: not every compiler translates C to machine language the
same way
I May not support the latest lingo (C11)
I Use our environment so that you are compatible

Statements/Expressions - Do Something

Assignment is very common use ‘equals sign’

x = 5;

End with a semicolon: ;
I Most frequent error is forgetting ;

Arithmetic

int x, int y = 5;
x = y * 2 + 1;
x = (y * 2) + 1;
x = y * (2 - 1);
x = x * x + y - 1;
x = y / 2;
x = y % 2; /* ??? */

Real Arithmetic

double x, double y = 5.0;
x = y * 2 + 1;
x = (y * 2) + 1;
x = y * (2 - 1);
x = x * x + y - 1;
x = y / 2;
x = y % 2; // !!!

Input/Output

Beginning C
Terminal printf and scanf

Files (later) fprintf and fscanf with fopen and fclose

Later Binary I/O with fwrite and fread

printf
Simple String messages

printf("Hello world\n");
printf("Line 1\nLine 2\nLine 3\n");

Formatted Output
Substitute variable values into format string at certain locations

%d integer %lf double
%c character %s string

printf("An integer %d\n",123);
printf("A real %f\n", 0.456);
printf("A string %s\n", "sweet");
// Multiple outputs in single statement
printf("An integer %d A real %f A string %s \n",

123, 0.456, "sweet");

scanf
I For input, especially from terminal
I Format string specifies kind of input

/* Demonstrate some scanf functions, relevant for HW1 */
#include <stdio.h>
int main(){

printf("Input an integer and a real\n");
int myint;
scanf("%d", &myint); /* & ??? */

double mydoub;
scanf("%lf", &mydoub); /* %lf ??? */

printf("i: %d d: %lf\n", myint, mydoub);

printf("Again!\n");
scanf("%d %lf", &myint, &mydoub);
printf("i: %d d: %lf\n", myint, mydoub);

}

Compilation and Preprocessing

gcc performs a bunch of steps

I Parse, syntax check, optimize, generate assembly, assemble,
link. . .

I One step is especially tied to C: preprocessing

Preprocessor

I A partner language to C
I Change program text before compilation
I Add files, Substitute text
I Use directives: #include and #define mostly
I Makes early changes to the program (pre in preprocessor)

Before and After

Before

#include <stdio.h>
#define SOME_NUMBER 42
#define SOME_STRING "Good Stuff"
#define SOME_CODE (x = 2*x)

int main(){
printf("string: %s\n",

SOME_STRING);
int x = 1 + SOME_NUMBER;
SOME_CODE;
printf("number: %d\n",x);

}

After

... stuff from stdio.h ...

...

...

int main(){
printf("string: %s\n",
"Good Stuff");
int x = 1 + 42;
(x = 2*x);
printf("number: %d\n",x);

}

Typical Preprocessor Use

I Constant declaration
I Convention: CONSTANT_IN_ALLCAPS
I #define PI 3.14159
I #define KMS_PER_MILE 1.609

I Including other files
I Headers (xxx.h)
I #include <stdio.h> - bring in printf

Notice: no semicolons for preprocessor statements

In First Program

I � Comments
I � Statements/Expressions
I � Variable Types
I � Assignment
I � Basic Input/Output
I � Function Declarations
I � Conditionals (if-else)
I � Iteration (loops)
I � Aggregate data (arrays, structs, objects, etc)
I � Library System

Wrap-up

Hot Seats sign paper with name and card-count
For next meeting
I Zyante reading, Ch 1-2 (see schedule)
I Setup your environment (see setup)
I HW 1 up and due next week

http://www.cs.gmu.edu/~kauffman/cs222/schedule.html
http://www.cs.gmu.edu/~kauffman/cs222/setup/setup.html

Let’s Solve a Problem (or at least start)
I Each GTA is assigned some lab sections for CS211
I Each lab section has a day/time and a student count

Your program (pseudocode / python/ whatever)
1. Read the data file provided
2. Compute the Head Count for each GTA
3. Print the Discrepancy: difference between biggest and smallest

head count

Input Data File

Day Time Room Count GTA
201 R 12:30 4457 19 Raj
202 R 01:30 4457 15 Raj
203 R 02:30 5358 6 Adam
204 R 03:30 4457 21 Raj
205 R 11:30 5358 11 Ruoxi

Head Counts

Raj 55
Adam 6
Li 11

Discrepancy: 49

Full Data
Input

201 R 12:30 4457 19 Raj
202 R 01:30 4457 15 Raj
203 R 02:30 5358 6 Adam
204 R 03:30 4457 21 Raj
205 R 11:30 5358 11 Li
206 R 12:30 5358 22 Li
207 R 01:30 5358 15 Li
208 R 02:30 5358 12 Adam
2H1 R 03:30 5358 17 Adam
210 R 01:30 1505 25 Adam
212 R 02:30 1505 24 Le
213 R 03:30 1505 24 Le
214 F 08:30 4457 3 Kacem
215 F 09:30 4457 10 Kacem
216 F 10:30 4457 12 Kacem
217 F 11:30 4457 24 Kacem

Head Counts

Raj 55
Adam 60
Li 48
Le 48
Kacem 39

Discrepancy: 24

