
CS 211: Recursion

Chris Kauffman

Week 13-1

Front Matter

Today

I P6 Questions
I Recursion, Stacks

Labs
I 13: Due today
I 14: Review and evals
I Incentive to attend lab 14,

announce Tue/Wed

End Game

4/24 Mon P6, Comparisons
4/26 Wed Recursion

Lab 13 Recursion
5/1 Mon Stacks/Queues

Lab 13 Due
5/3 Wed Review/Evals

Lab 14 Review/Evals
5/7 Sun P6 Due
Mon 5/15 Final Exams

002 10:30am-1:15pm
006 1:30pm-4:15pm

Summarize Search Sort

I What are the built in search/sort routines in Java?
I What classes are they in?
I How can a new class be used with them?
I How fast are these library routines?

I Linear search
I Binary search
I Sorting algorithm

Rabbits

A puzzle.1

Consider the growth of an idealized (biologically
unrealistic) rabbit population, assuming that:

I A newly born pair of rabbits, one male, one female,
are put on an island;

I Rabbits are able to mate at the age of one month so
that at the end of its second month a female can
produce another pair of rabbits;

I Rabbits never die and a mating pair always produces
one new pair (one male, one female) every month
from the second month on.

How many pairs will there be in one year?

1Adapted from Wikipedia

Simulation

Write a program to simulate the rabbit population.
I First we should develop a general approach
I Look at some data for this

Tabularly
Mature pair produce baby pair the following month

BN Baby pair from pair N
MN Mature pair from pair N

Month 0 1 2 3 4 5 6 7
Pairs 0 1 1 2 3 5 8 13
Pair 0 BI MI MI MI MI MI MI
Pair 1 B0 M0 M0 M0 M0
Pair 2 B0 M0 M0 M0
Pair 3 B0 M0 M0
Pair 4 B1 M1 M1
Pair 5 B0 M0
Pair 6 B1 M1
Pair 7 B2 M2
Pair 8 B0
Pair 9 B1
Pair 10 B2
Pair 11 B3
Pair 12 B4

Pattern

How does the population of a month relate to previous months?

Recursively

Population for Month i = Pop. Month i-1 + Pop. Month i-2
Better known as Fibonnaci Numbers:

f0 = 0

f1 = 1

fi = fi−1 + fi−2

public static int fib(int n)
I Recursive implementation?
I Iterative implementation?
I Call Stack behavior in each

Recursion is. . .
Something specified in terms of a smaller version of itself

Recursion involves

Base Case
The "smallest thing", where you can definitively say "here is the
answer"

Inductive/Recursive Case
If I had the answer to a few smaller versions of this problem, I could
combine them to get the answer to this problem.

Identify Base and Recursive Cases

Fibonacci

f0 = 0

f1 = 1

fi = fi−1 + fi−2

Factorial

fact(n) = n ∗ fact(n − 1)

fact(0) = 1

Examine Stack Trace for Fibonacci

Recursive

public static int fibR(int n)

I Recursive implementation
I View Stack Trace of fibR(4)

Iterative

public static int fibI(int n)

I Iterative implementation?
I View Stack Trace of fibI(4)

Point
Recursion utilizes the Stack to store information about history

Exercise: Show the stack trace of fib

1 public class Fib{
2 static int CALLS = 0;
3 public static void main(String args[]){
4 int fn = fib(4);
5 System.out.printf("%d %d\n",fn,CALLS);
6 }
7 public static int fib(int n){
8 CALLS++;
9 // Draw call stack here when CALLS==9

10 if(n==0){ return 0; }
11 if(n==1){ return 1; }
12 else{
13 int tmp1 = fib(n-1);
14 int tmp2 = fib(n-2);
15 return tmp1+tmp2;
16 }
17 }
18 }

I static var CALLS
counts number
times fib(n) is
entered

I Show stack trace
starting with
fib(4)

I Show local vars
n,tmp1,tmp2 in
stack frames

I Stop when CALLS
reaches 9

Other Uses for Recursion
Enumeration
Show me all possibilities of something

I All permutations of the numbers 1 to 10
I Print all games of Party Pong (hard problem from previous

year)

Search Problems
Show me whether something exists and how its put together

I Does a number exist in an array?
I Does a path exist from point M to point C on a grid and what

is that path?

M								C														

http://cs.gmu.edu/~kauffman/cs211/party-pong.html
http://cs.gmu.edu/~kauffman/cs211/party-pong.html

Exercise: Sums

I Print all permutations of positive numbers
which total 8 (order of numbers matters)

I Create a recursive helper called
totalsTarget()

I Base and recursive cases?

Prototypes

public static void sumsTo8(){..}

public static
void totalsTarget(int target,

int current,
String history)

target: Eight!
current: current total
history: numbers used so far

Example output

> javac Sums.java
> java Sums
8 = 1 1 1 1 1 1 1 1
8 = 1 1 1 1 1 1 2
8 = 1 1 1 1 1 2 1
8 = 1 1 1 1 1 3
8 = 1 1 1 1 2 1 1
..
8 = 6 1 1
8 = 6 2
8 = 7 1
8 = 8

I 128 lines. . .
I Iterative version?

The "Power" of Recursion

Questions
I What problems can one solve with Recursion that cannot be

solved with iteration (looping)
I Vice versa: loops can, recursion can’t?

Stacks and Stacks of. . .

I We will shortly examine a
solution to the sums problem
which does not use recursion

I For that, we will need a data
structure: a stack

I Should be familiar at this
point based on our
discussions of function call
stack

Stacks

A data structure, supports a few
operations

I T s.getTop(): return
whatever is on top

I s.push(T x): put x on top
I void s.pop(): remove

whatever is on top
I boolean s.isEmpty():

true when nothing is in it,
false o/w

Stacks are a LIFO:
Last In First Out

Questions

I Examples of stacks?
I How would you implement a stack using arrays?

Array Based Implementation of Stacks

I Must dynamically expand an internal array
I Following the textbook ArrayList implementation should

make this easy
I Can check your work against java.util.Stack: should

behave similarly

class AStack<T>{
public AStack(); // Constructor
public void push(T x); // Like add(x)
public T pop(); // Like remove(size()-1)
public T top(); // Like get(size()-1)
// peek() is often a synonym for top()
public int size();
public int getCapacity();

}

Sums to 8 - No Recursion
Consider again the
sums-to-8 problem

> javac Sums.java
> java Sums
8 = 1 1 1 1 1 1 1 1
8 = 1 1 1 1 1 1 2
8 = 1 1 1 1 1 2 1
8 = 1 1 1 1 1 3
8 = 1 1 1 1 2 1 1
..
8 = 6 1 1
8 = 6 2
8 = 7 1
8 = 8

Use stacks to get the following

cur: 0 hist: ’’ toAdd: [8, 7, 6, 5, 4, 3, 2, 1]
cur: 1 hist: ’ 1’ toAdd: [7, 6, 5, 4, 3, 2, 1]
cur: 2 hist: ’ 1 1’ toAdd: [6, 5, 4, 3, 2, 1]
cur: 3 hist: ’ 1 1 1’ toAdd: [5, 4, 3, 2, 1]
cur: 4 hist: ’ 1 1 1 1’ toAdd: [4, 3, 2, 1]
cur: 5 hist: ’ 1 1 1 1 1’ toAdd: [3, 2, 1]
cur: 6 hist: ’ 1 1 1 1 1 1’ toAdd: [2, 1]
cur: 7 hist: ’ 1 1 1 1 1 1 1’ toAdd: [1]
cur: 8 hist: ’ 1 1 1 1 1 1 1 1’ toAdd: []
8 = 1 1 1 1 1 1 1 1
cur: 7 hist: ’ 1 1 1 1 1 1 1’ toAdd: []
cur: 6 hist: ’ 1 1 1 1 1 1’ toAdd: [2]
cur: 8 hist: ’ 1 1 1 1 1 1 2’ toAdd: []
8 = 1 1 1 1 1 1 2
...
...
8 = 6 2
cur: 6 hist: ’ 6’ toAdd: []
cur: 0 hist: ’’ toAdd: [8, 7]
cur: 7 hist: ’ 7’ toAdd: [1]
cur: 8 hist: ’ 7 1’ toAdd: []
8 = 7 1

Iterative Solutions

Use a little class to "simulate" a recursive call stack.

public static void totalsTarget(int target){
Stack<SumFrame> stack = new Stack<SumFrame>();
SumFrame first = new SumFrame(0,target,"");
stack.push(first);

// Simulate the recursive call stack with a loop
while(stack.size() > 0){

SumFrame frame = stack.peek();

Store info about what should be done at each step in those frames

class SumFrame{
public int current; // Current sum
public Stack<Integer> toAdd; // Numbers remaining to add
public String history; // History of adds that led here

Solution in SumsNoRecursion.java

