
CS 211: Exceptions

Chris Kauffman

Week 9



Front Matter

Today

I Exceptions
I Maybe Generics

Lab 9: Quiz

I Enumerations, Abstract
Classes, Interfaces

I Practice problems up

P4: GateSim
I Due ~ 2 weeks
I Minor updates for

clarification
I Field Questions



Exceptions

I Generally allow nonlocal
control flow,

I Thrown when execution
must change location

I Done most often when an
error occurs

I Exceptions Move up and out
I Up the call stack
I Out to a catch
I Crash program if not

caught



Java exceptions

I Are objects: Exception e = new Exception("FAIL!!");
I Subclass of Throwable, Error is as well
I Can be thrown: throw e;
I Can be caught: try{...} catch(Exception e){...}
I Throwing method must declare uncaught throws. . .

sometimes; Catch or Declare
I Allow cleanup with finally



General Flow

always;
try {

may cause exceptions;
may also cause exceptions;

}
catch(SomeException e){

handle this kind of exception;
be graceful;

}
catch(OtherException o){

handle a different kind;
}
finally{

always do this;
even if no exception thrown;
even if exception thrown;
even if uncaught is thrown;
use it close files and flush output;

}
do this after no/handled exceptions;

Exercise
I SimpleExceptions.java
I Trace execution path
I What gets printed?

catch and Types

I catch figures types of
exceptions identically to
instanceof

I Ordering problems can arise
I See

TieredExceptions.java



Errors Happen
Handling them is always painful

I Old style: return an error code - C
I Newish style: change the flow of control

Compare: Reading first Word of a File

I ReadFirstWord.c
I ReadFirstWord.java
I ReadFirstNonlocal.java
I ReadFirstManyCatch.java

Compare: Reading 3-column Input

I CrashOnErrors.java
I HandleErrors.java
I HandleErrors2.java



Catch or Declare. . . sometimes
How many times have you written

... throws NullPointerException

I RuntimeExceptions and Errors aren’t declared
I Reserved for bugs rather than anticipated conditions

Unchecked runtime exceptions represent conditions that,
generally speaking, reflect errors in your program’s logic
and cannot be reasonably recovered from at run time.
– The Java Programming Language, by Gosling, Arnold,
and Holmes

See also
I Overview of Checked v. Unchecked by Hirondelle Systems
I Chua Hock-Chuan’s Lecture Notes on Java Exceptions
I I am a great fan of RuntimeException during development

http://www.javapractices.com/topic/TopicAction.do?Id=129
https://www3.ntu.edu.sg/home/ehchua/programming/java/J5a_ExceptionAssert.html


Checked versus Unchecked

Source: Chua Hock-Chuan: Java Programming Exception Handling & Assertion

https://www3.ntu.edu.sg/home/ehchua/programming/java/J5a_ExceptionAssert.html

