
CS 211: Enumerations

Chris Kauffman

Week 9-1



Logistics

Exam 1
Back Wednesday (probably)

Today

I Top-level Kinds in Java
I Enumerations
I P4 discussion

Lab 8: Exercises
Enumerations

P4 Circuits
I Due in 3 weeks
I Big-ish
I Abstract classes
I Enumerations (today)
I Interfaces (next)



The Continuum of Java’s Top-Level Entities

Interface
No fields allowed
Methods can't be specified

Ethereal Concrete

Regular Class
All fields/methods 
specified

Abstract Class
Some fields/methods specified
Some methods abstract

Abstract Class
No fields specified
No Methods specified

Abstract Class
All fields/methods 
specified

Enumeration
All instances 
specified

I Regular classes are more concrete
I Abstract classes are more ethereal
I Enumerations are as concrete as possible
I Interfaces are as ethereal as possible



Java has 4 Top-Level Kinds

class

I Run of the mill concrete
objects

I Child classes extend

enum

I Like a class (fields methods)
except. . .

I All instances declared up
front, automatically static
final

I Good for modeling fixed
collections

I Cannot extend

abstract class

I Can’t instantiate but good
for single inheritance
hierarchies,

I Child classes extend

interface

I Can’t instantiate
I Good for capabilities cutting

across class hierarchies:
savable, accessible,
observable, comparable

I Child classes implement



enum: An Enumeration

Like saying class
I Can have fields
I Can have methods
I Can have constructors
I BUT all possible instances are declared up front
I NO public constructors allowed

I You’ll never get to new one

enum will be a fixed set



Typical Uses

Create a fixed set of objects for modeling

States of a baby: no properties

I BState used by Baby
I BabyWithState has an inner enum
I Latter indicates enum isn’t meant for public use
I Irritating need to include BState or State for all enum values
I Note weird .class files after compiling BabyWithState



Exercise: Cards in a Deck

I Create an enum Card for the value of a playing card
I Values: two, three, four, . . . ten, jack, king, queen, ace
I Should take you 2 minutes



Enums are functional

I Can have fields, Can implement methods

Cards: beats(c) method

Card x = Card.two;
Card y = Card.ten;
boolean wins = x.beats(y); // false
Card z = Card.king;
wins = z.beats(y); // true

Exercise: Discuss implementation
How can one easily implement the beats(c) method?



Answer: Include fields for face value

I Each card has an integer faceValue field
I Method beats(c) uses that value

public enum Card{
two(2), three(3), four(4), five(5), six(6), seven(7), eight(8),
nine(9), ten(10), jack(11), queen(12), king(13), ace(14);

public int faceValue;
private Card(int v){

this.faceValue = v;
}
public boolean beats(Card c){

return this.faceValue > c.faceValue;
}

}



Enumerations in P4: Signal
Values: HI, LO, X

public Signal invert()
HI -> LO
LO -> HI
X -> X

public static Signal fromString(char c)
’1’ -> HI
’0’ -> LO
’X’ -> X
’x’ -> X

public static List<Signal> fromString(String inps)
List<Signal> sigs = Signal.fromString("1001x1X0");
sigs -> [HI, LO, LO, HI, X, HI, X, LO]

@Override public String toString()
HI -> "1"
LO -> "0"
X -> "X"

public static String toString(List<Signal> sig)
String str = Signal.toString(sigs)
str -> "1001X1X0"


