
CS 211: Final/Abstract to Stop/Force Inheritance

Chris Kauffman

Week 6

Logistics

Goals Today

I Stopping inheritance: final
I Forcing inheritance:

abstract

Lab Quiz this Week

P3 Due Sunday

I Tests released
I Note on AutomaticSC and

upper/lower case
I Questions?

Reading: Inheritance

I Building Java Programs Ch 9
I Lab Manual Ch 7

Exam 1 Schedule

Mon 2/27 Equals, Dispatch
Wed 3/1 Abstract, Final

Lab Quiz
Sun 3/5 Project 3 Due
Mon 3/6 Review
Wed 3/8 Exam 1
Mon 3/13 Spring Break

Exercise: Override vs Overload
Find examples of overriding a method and overloading a method.
class P{

public void print(String s){
System.out.println(s);

}
public void print(int i){

System.out.println(i);
}
public void print(String s, int i){

this.print(s);
this.print(i);

}
}
class C extends P{

public void print(String s){
System.out.println("Different: "+s);

}
public void print(double x){

System.out.println(x);
}

}

Exercise: Dispatch Across Classes
class Combiner {

protected int result;
public Combiner(){

this.result = 0;
}
public int getResult(){

return result;
}
public void combine(int i){

this.result += i;
}
public void combineAll(int [] a){

for(int x : a){
this.combine(x);

}
}

}
class Productizer extends Combiner{

public Productizer(){
this.result = 1;

}
@Override
public void combine(int i){

this.result *= i;
}

}

What gets printed. . .
When main() gets run and why
do the numbers differ?

public class Dispatcher{
public static void main(String args[])
{

int arr [] = {1, 2, 3, 4, 5};

Combiner sum =
new Combiner();

sum.combineAll(arr);
System.out.printf("Sum: %d\n",

sum.getResult());

Combiner prod =
new Productizer();

prod.combineAll(arr);
System.out.printf("Product: %d\n",

prod.getResult());
}

}

Preventing Inheritance

I Occasionally want to prevent inheritance of a class
I Keyword final prevents changes

Examples of final

public final int x; // assign variable/field x

public final class C {..} // cannot extend C

// Can extend P but
public class P {

// Cannot override doIt
public final int doIt(){...}
public int fakeIt(){...}

}

Class P can have children, children can override fakeIt() but
cannot override doIt(). Examine PreventInheritance.java

Why Make a Class/Method final?

I Somewhat beyond the scope of this course
I Canonical example: String is final to keep it immutable
I Prevents any crazy, change-able child strings from being used

in place of immutable version
I Enables compiler/runtime optimizations and potentially some

security
I final methods may enable somewhat better performance to

avoid dynamic dispatch

Forcing Inheritance
I Sometimes want to set up a hierarchy but don’t have a good

default behavior
I Force implementation of certain methods
I Example: Combiner from early was suspicious: added in

parent class which was arbitrary
I Every combiner must be able to combine(..)
I But no default way to proclaim: make it abstract

abstract public class Combiner{ // Abstract
abstract public void combine(int i);
public void combineAll(int [] a){ ... }
...;

}
public class Summer extends Combiner { // Concrete

public void combine(int s){ result+=i; }
}
public class Productizer extends Combiner { // Concrete

public void combine(int s){ result*=i; }
}

Why abstract class?

Interchangeable parts
Interchangeable components can be set up via 3 mechanisms

I Inheritance (normal and abstract classes)
I Interfaces (soon)
I Generics (later in the course)

All rely on interchangeable parts having similar/same methods

When to use abstract class
Following factors indicate abstract class is the correct
mechanism

I Obvious hierarchy of objects
I No need to mix in methods: class Z does NOT need methods

from both class X and Y
I Want to share implementation and fields between some classes
I No complete default implementation

Dremel: A tool with Interchangeable Parts

Source

http://www.ewdsolutions.com/customer/elwida/images/items/Dremel_tool_kits_4000-6-50.jpg

Car: Many Interchangeable Parts

Source

http://neilperkin.typepad.com/only_dead_fish/2008/02/the-sum-of-the.html

Heels. . . Okay this is just ridiculous

Source

http://www.taiwantrade.com.tw/MAIN/en_front/searchserv.do?method=listProductProductDetail&locale=2&MEMBER_TYPE=4&WEB_OPEN=&DOMAIN_NAME=&DOMAIN_NAME_FLAG=&company_id=266071&catalog_id=612333&come_soon=0

P3: Redesign?
The correctWord(word) is a good candidate to be abstract

I One could argue that it has no good default behavior
I Should be overridden by children that have a concrete idea

Redesign

public abstract class SpellChecker {
...;
public boolean isCorrect(String word){...}
public abstract String correctWord(String word);
public String correctDocumnet(String word){...}
...

}
public class HighlightingSC {

@Override
public String correctWord(String word){

return String.format("**%s**",word);
}

}

Preview: All of Java’s Top-Level Entities

Interface
No fields allowed
Methods can't be specified

Ethereal Concrete

Regular Class
All fields/methods
specified

Abstract Class
Some fields/methods specified
Some methods abstract

Abstract Class
No fields specified
No Methods specified

Abstract Class
All fields/methods
specified

Enumeration
All instances
specified

I Regular classes are more concrete
I Abstract classes are more ethereal

Exercise Swing: Java GUI Classes

I These set up a deep hierarchy, many abstract classes
I Examine the docs for JButton and find abstract classes from

which it descends

Will trace down to
JButton

JButton Java Doc

http://docs.oracle.com/javase/7/docs/api/javax/swing/JButton.html

Top of the Hierarchy

public abstract class Component extends Object
implements ImageObserver, MenuContainer, Serializable

A component is an object having a graphical representation that can be
displayed on the screen and that can interact with the user.

public class Container
extends Component

A generic Abstract Window Toolkit(AWT) container object is a component
that can contain other AWT components.

public abstract class JComponent extends Container
implements Serializable

The base class for all Swing components except top-level containers. To use a
component that inherits from JComponent, you must place the component in a
containment hierarchy whose root is a top-level Swing container.

Buttony Things

public abstract class AbstractButton extends JComponent
implements ItemSelectable, SwingConstants

Defines common behaviors for buttons and menu items.

public class JButton extends AbstractButton
implements Accessible

An implementation of a "push" button.

