
CS 211: Basic Inheritance

Chris Kauffman

Week 5

Announcement: Engineers Week

National Engineers Week is February 21st-27th. Special activities
begin with a Kick-off Social in the Atrium on Monday, February 22
at 3:00 p.m.. Enjoy cookies, cake, and light refreshments with
friends and colleagues.

I Tue 2/21: 10:30am-1:00pm: Patriot Hackers in ENGR Atrium
I All Activities: https://volgenau.gmu.edu/sites/common/

files/Engineers%20Week%202017_0.pdf

https://volgenau.gmu.edu/sites/common/files/Engineers%20Week%202017_0.pdf
https://volgenau.gmu.edu/sites/common/files/Engineers%20Week%202017_0.pdf

Announcement: Spring Career Fair

I Wednesday, February 22: Science, Technology, Engineering
and Math focus

I 11 a.m. - 4 p.m.
I Fairfax Campus, Johnson Center, Dewberry
I Thursday, February 23: Business, Public Service and Non-Tech

Focus

Logistics

Labs
05 Exercises: Inheritance with
PrintWriter

P3 Up, Discuss
Spellcheckers via Inheritance

Reading: Inheritance

I Building Java Programs Ch 9
I Lab Manual Ch 7

Goals Today

I Overview P3
I Continue Discussion of

Inheritance
I Equals Methods

Inheritance

Warning: Inheritance is a tricky subject because. . .
I It’s not too bad to understand basic mechanics
I Creates behavior only observable at runtime
I Spreads out code to do one task into multiple places
I Advantages are not apparent until you have a large system
I Teaching examples do not reflect what inheritance is good for

Our Approach

I Spend today and part of Thursday on mechanics of inheritance
I These will involve little examples with mostly bad practice

associated with it
I Then discuss good/bad applications of inheritance and why

extends may in fact be evil

Basic Inheritance Mechanics: Animals.java
Primary reason for an inheritance hierarchy is to create a container
for several kinds of things that can behave differently.

class Animal{ }
class Human extends Animal { }
class Mouse extends Animal { }

main(){
Animal animals[] = new Animal[]{

new Animal(),
new Human(),
new Mouse()

};
...

}

I Each animal implements its own proclaim() method
I Each behaves differently on

Fields are Inherited: 2D vs 3D Coord

public class Coord {
public final int row;
public final int col;
public Coord(int ir, int ic){

this.row = ir;
this.col = ic;

}
public String toString(){

return
String.format("(%d,%d)",

row,col);
}
public boolean equals(Coord c){

return
this.row==c.row &&
this.col==c.col;

}

}

public class Coord3D extends Coord{
// Fields row and col are inherited
public final int height;
public Coord3D(int ir, int ic, int h){

super(ir,ic); // Required
this.height = h;

}
public String toString(){

return
String.format("(%d,%d,%d)",

row,col,height);
}
public boolean equals(Coord3D other){

return
this.row == other.row &&
this.col == other.col &&
this.height == other.height;

}
}

Annotations

Java Annotations
I @Information for the compiler
I Like comments but the compiler may not completely ignore
I Metadata that summarizes the intent of code

Examples
@Test This code tests other code (compiler may just ignore)

@Deprecated This code is old, unsupported, may disappear
@Override Error if not overriding parent method

http://en.wikipedia.org/wiki/Java_annotation

Note on @Override

Annotating methods with @Override which are intended to
override a parent method notifies the compiler to check for danger.

A Subtle Bug

@Override
public boolean equals(Coord other){

if(other==null ||
!(other instanceof Coord)){

return false;
}
Coord that = (Coord) other;
return

this.row==that.row &&
this.col==that.col;

}

Compiler Output

> javac Coord.java

Coord.java:17: error:
method does not override or
implement a method from a
supertype

@Override
^

1 error

Child Classes Must Call Parent Constructor
I Animal did not specify a constructor
I Java always provides a default 0-argument constructor if no

constructors are specified
Animal a = new Animal()

I The constructor for Human initializes it’s parent class
automagically as follows
public Human(){ // Created automatically

super(); // Call done automatically
}

I Coord has a two-argument constuctor
Coord c = new Coord(1,2);

I That means it is now illegal to say
Coord c = new Coord();
unless a zero-arg constructor is explicitly defined

I Coord3D must call a valid parent constructor
I Coord3D must therefore call constructor

super(ir,ic);

That’s super!

Keyword this gives access to present class’s fields and methods

this(arg1,arg2,arg3); // call another constructor
this.someField = stuff; // access a field
this.doSomething(x,y); // call a method

Keyword super gives access to parent class’s fields and method

super(arg1,arg2,arg3); // call parent constructor
super.someField = stuff; // access parent field
super.doSomething(x,y); // call parent method

Extending Classes You Can’t See Inside

When writing programs

I Create whole new class hierarchy: Rare
I Extend someone else’s class: Frequent

PrintWriter and Extensions
I Lab will have you extending the java.io.PrintWriter class
I Can’t see the source code (without searching for it)
I How do you extend it?

PrintWriter

A class that allows printing to the screen or to a file

PrintWriter out = new PrintWriter(new File("myfile.txt"));
// PrintWriter out = new PrintWriter("myfile.txt");
// PrintWriter out = new PrintWriter(System.out);
out.println("Sweet foutput");
out.printf("An int: %d\nA double %.1f\nA string: %s\n",

1, 2.5, "Three");
out.close(); // May close System.out (bad)

Have a look at the PrintWriter Java Doc.

http://docs.oracle.com/javase/7/docs/api/java/io/PrintWriter.html

Exercise: ScreamWriter
I It’s bad form to SCREAM TEXT CONSTANTLY
I But some folks do it anyway
I Extend PrintWriter to ScreamWriter which screams output
I toggleVolume() turns screaming off/on
I ScreamWriters equal if screaming on/off matches

Welcome to DrJava.
> ScreamWriter out = new ScreamWriter(System.out);
> out.println("Hello there.");
HELLO THERE.
> out.toggleVolume()
> out.println("That’s better");
That’s better
> Object out2 = new ScreamWriter("somefile.txt");
> out2.equals(out)
false
> out.toggleVolume()
> out2.equals(out)
true

ScreamWriter Strategy

public class ScreamWriter extends PrintWriter

Write two constructors that allow ScreamWriters to be created.
Will need to call parent class constructor with super(..)

public ScreamWriter(OutputStream o) throws Exception
public ScreamWriter(String filename) throws Exception

I Establish a field to control volume (SCREAM vs Normal)
I Create/Override the following methods
I Use parent version of println()

public void toggleVolume() // Turns screaming on/off
public void println(String s) // Print, maybe all caps
public boolean equals(Object o) // True for another SCREAMING writer

Grind on this one a few minutes. Answer in today’s code pack.

Recap: Inheritance

I Inherited attributes:
I Class Coord3D extends class Coord: what attributes does

Coord3D get through inheritance?
I Class ScreamWriter extended PrintWriter: what attributes

did it get?
I What attributes does any child class get through inheritance?

I What must be done if a child class wants to behave differently
than the parent class?

I What is the difference between the keywords this and super?
I How does a child class initialize its parent class?
I How does a child class invoke its parent class’s version of a

method?
I What methods does every class and why?

Inherited Fields: protected vs private
Modifier Class Package Subclass World Note
public Y Y Y Y Children see it
protected Y Y Y N Children see it
no modifier Y Y N N Children don’t
private Y N N N Children don’t

class Parent{
protected int prot;
private int priv;
public Parent(int i, int j){

this.prot=i; this.priv=j;
}

}
class Child extends Parent{

public Child(){
super(1,2);

}
public void show(){

System.out.println(prot);
System.out.println(priv);

}
}

> javac ProtectedFields.java
ProtectedFields.java:17:
error: priv has private access

in Parent

System.out.println(priv);

Quick Note on Shadowing

class Parent {
protected int field;
Parent(int f){ field = f; }
public void reportField(){

System.out.println(field);
}}

class ProperChild extends Parent{
ProperChild(int f){ super(f); }
public void anotherReport(){

System.out.println(field);
}}

class ShadyChild extends Parent{
protected int field;
public ShadyChild(int f){

super(f); field = 2*f;
}
public void anotherReport(){

System.out.println(field);
}}

What Gets Printed?

public class Shadowing{
public static void
main(String args[]){

Parent p = new Parent(1);
p.reportField();

ProperChild pc =
new ProperChild(2);

pc.reportField();
pc.anotherReport();

ShadyChild sc =
new ShadyChild(3);

sc.reportField();
sc.anotherReport();

}
}

Don’t write code like this. . .

Exercise: Finish ScreamWriter

Current Solution
import java.io.*;
public class ScreamWriter
extends PrintWriter
{

public ScreamWriter(OutputStream o){
super(o);

}
public ScreamWriter(File f)
throws Exception
{

super(f);
}
public ScreamWriter(String filename)
throws Exception
{

super(new File(filename));
}
public void println(String s){

String output = s.toUpperCase();
super.println(output);
this.flush();

}
}

Allow Volume Toggling

// Turns screaming on/off
public void toggleVolume()

Example use:

> ScreamWriter out =
new ScreamWriter(System.out);

> out.println("Hello there.");
HELLO THERE.
> out.toggleVolume()
> out.println("That’s better");
That’s better
> out.toggleVolume()
> out.println("how about now?");
HOW ABOUT NOW?

Dynamic Dispatch
Suppose we have an animal

Animal a = ...;

Methods: Single Dispatch

a.doSomething()

Call the method doSomething()
with the most specific kind of
thing a is as this

I Always done of method
invocation

I There is runtime
performance penalty

No Dispatch on Arguments

someFunction(a);

Call method someFunction()
with a treated as a plain Animal
as the argument

I Type of a determined at
compile time and appropriate
method is chosen

I No runtime performance
penalty

SingleDispatch.java demonstrates this difference

Multiple Dispatch

Incredibly useful in some programming problems as it simplifies code
but not present in java: see the code in DoubleDispatch.java

public static void meets(Animal x, Animal y){
System.out.println("Nothing special");

}
public static void meets(Snake x, Mouse y){

System.out.println("Snake eats mouse");
}
public static void main(String args[]){

Animal x = new Snake();
Animal y = new Mouse();
meet(x,y); // What do I print?

}

