
CS 211: Defining Classes

Chris Kauffman

Week 3-2

Logistics

P2: Instant Runoff Voting

I Can anyone explain?
I Class decomposition

Topics Today

I Strategies for
VotingMachine methods

I Creating classes/objects
(project)

Reading

I Building Java Programs Ch 8
I Lab Manual Ch 4 and 5

PracticeIt! BJP 3rd Ed
Exercises

I Ch 8 Exercise 18
I Ch 8 Exercise 20
I Ch 8 Exercise 21
I Ch 8 Exercise 22

http://practiceit.cs.washington.edu/problem.jsp?category=Building+Java+Programs%2C+3rd+edition%2FBJP3+Chapter+8&problem=bjp3-8-e18-classRectangle
http://practiceit.cs.washington.edu/problem.jsp?category%3DBuilding%2BJava%2BPrograms%252C%2B3rd%2Bedition%252FBJP3%2BChapter%2B8&problem%3Dbjp3-8-e20-containsRectangle
http://practiceit.cs.washington.edu/problem.jsp?category%3DBuilding%2BJava%2BPrograms,%2B3rd%2Bedition/BJP3%2BChapter%2B8&problem%3Dbjp3-8-e21-unionRectangle
http://practiceit.cs.washington.edu/problem.jsp?category%3DBuilding%2BJava%2BPrograms%252C%2B3rd%2Bedition%252FBJP3%2BChapter%2B8&problem%3Dbjp3-8-e22-intersectionRectangle

Aggregate Data
Define Now there’s a type bleh, it looks like blah
Declare Here is a variable, its type is bleh
Assign Element foo of variable bar gets value blip
Access Retrieve element foo of variable bar

Arrays
Create Homogeneous Aggregate Data

I Each constituent element is the same type
I Access via number index: a[5] = something;

Classes
Define Heterogeneous Aggregate Data

I Constituent elements can be of different types
I Access via symbolic field name

a.field1 = 1;
a.Xfiled = "init!";

Basic Objects are Just Data

Omelets in SOmelet.java, no static fields

public class SOmelet{
public int eggs;
public int ozCheese;
public String extraIngredients;
public double totalCookMinutes;

}

main(){
SOmelet o = new SOmelet();
o.eggs = 3;
o.ozCheese = 4;
o.extraIngredients = "";
System.out.println("Cooked "+o.totalCookMinutes);

}

Exercise: One Class, Many Objects
Draw a Memory Diagram for the main() method below at the
location indicated

main(){
SOmelet small = new SOmelet();
small.eggs = 2;
small.ozCheese = 3;

SOmelet big = new SOmelet();
big.eggs = 4;
big.ozCheese = 6;

SOmelet shallow = small;

SOmelet [] oa = new SOmelet[5];
for(int i=0; i<oa.length; i++){

oa[i] = new SOmelet();
oa[i].eggs = i; oa[i].ozCheese = 2*i;

}
// Draw memory diagram HERE

}

public class SOmelet{
public int eggs;
public int ozCheese;
public String extraIngredients;
public double totalCookMinutes;

}

Typically Want to do stuff with data

I static Methods defined in SOmeletMethods.java
I Used in UseSOmelet.java (excerpt below)

// Create an omelet
SOmelet standard = SOmeletMethods.constructSOmelet();
// Calculate calories
calories= SOmeletMethods.getBaseCalories(standard);
// Cook an omelet
SOmeletMethods.cookFor(standard, 4.0);
// Cooked long enough?
safe = !SOmeletMethods.foodPoisoningIminent(standard);

Notice always invoking static method through SOmeletMethods
class (irritation)

Defining Static Methods on Objects

Take a reference to the object and do something with it; from
SOmeletMethods.java

// Cook an omelet for the given amount of time
public static void cookFor(SOmelet thisOmelet,

double cookMinutes){
thisOmelet.totalCookMinutes += cookMinutes;

}

// Determine if consumption of the given omelet is risky
public static
boolean foodPoisoningIminent(SOmelet thisOmelet){

return
thisOmelet.totalCookMinutes < 1.0 * thisOmelet.eggs;

}

Notice reference thisOmelet is always required (irritation)

Remember: SOmelet is unconventional

SOmelet.java and SOmeletMethods.java are weird
I Don’t follow java convention
I Requires explicit reference thisOmelet in all methods
I Precludes dynamic dispatch (next week)

However
Static method approach clearly separates

I Data versus Functions acting on data
Easier to build understanding from there because..

Standard Java
Lets mix data and functions together and season with this

The "Normal" Way
I See OOOmelet.java
I No static methods or fields (except constants)
I Equivalent in most ways to SOmelete.java +

SOmeletMethods.java

public class OOOmelet{
// No static fields
public int eggs;
public int ozCheese;
public String extraIngredients;
public double totalCookMinutes;

// Constructors
public OOOmelet(int eggs, int ozCheese){ ... }
public OOOmelet(){...}

// No static methods
public void addIngredient(String ingredient){...}
public void cookFor(double cookMinutes){...}
...

}

Methods
Discuss this: hidden parameter to method invocation

Standard: OOOmelet
public void
cookFor(double cookMinutes){

this.totalCookMinutes +=
cookMinutes;

}

public boolean
isBurned(){

return
this.totalCookMinutes

> 2.0 * this.eggs;
}

main(){
OOOmelet oo =

new OOOmelet();
oo.cookFor(4.0);

}

Static: SOmelet
public static void
cookFor(SOmelet thisOmelet,

double cookMinutes){
thisOmelet.totalCookMinutes +=

cookMinutes;
}

public static boolean
isBurned(SOmelet thisOmelet){

return
thisOmelet.totalCookMinutes

> 2.0 * thisOmelet.eggs;
}

main(){
SOmelet so =

SOmeletMethods.constructSOmelet();
SOmeletMethods.cookFor(so, 4.0);

}

Constructors
Weird methods that build an object but don’t return it. Compare:

Standard

public class OOOmelet{

public OOOmelet(int eggs,
int ozCheese){

// No allocation
this.eggs = eggs;
this.ozCheese = ozCheese;
this.extraIngredients =

new String("");
this.totalCookMinutes = 0.0;
// No return

}

Static

public class SOmeletMethods {
public static SOmelet
constructSOmelet(int eggs,

int ozCheese){
SOmelet thisOmelet = new SOmelet();
thisOmelet.eggs = eggs;
thisOmelet.ozCheese = ozCheese;
thisOmelet.extraIngredients =

new String("");
thisOmelet.totalCookMinutes = 0.0;
return thisOmelet;

}

Error Checking
Modify the constructor for OOOmelet to throw a
RuntimeException if eggs or ozCheese is a negative number.

Exercise: To String, or Not To String.
That is not a question. ’Tis almost always better to endure writing
a toString() method that prints a pretty version of the object.

Write toString() for OOOmelet
Welcome to DrJava.
> OOOmelet standard = new OOOmelet();
> System.out.println(standard.toString());
3 egg 4 oz cheese omelet, cooked for 0.0 minutes

> standard.cookFor(2.3)
> System.out.println(standard)
3 egg 4 oz cheese omelet, cooked for 2.3 minutes

> OOOmelet coronary = new OOOmelet(5,12);
> coronary.addIngredient("bacon");
> coronary.cookFor(4.6785)
> System.out.println(coronary)
5 egg 12 oz cheese omelet, cooked for 4.7 minutes

Don’t touch that

Java enables Access Control for insides of classes
I Visibility of fields and methods to other stuff
I public, protected, none, private
I Put them in front of methods and fields
I Play with these in OOOmelet

Access Modifiers

Access Levels for Fields/Methods by other stuff

Modifier Class Package Subclass World
public Y Y Y Y
protected Y Y Y N
no modifier Y Y N N
private Y N N N

I Mostly concerned with public and private, read about
others on your own

I Most projects will specify required public methods, maybe
public fields

I Most of the time you are free to create additional private
methods and fields to accomplish your task

Official docs on access modifiers

http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Getter, Setter, Class Invariant
Common Java convention is to make all fields private and provide
getter and setter methods to change them

Getter/Setter for Eggs

public class OOOmelet{
public int eggs;
public int ozCheese;
...
public double getEggs(){

return this.eggs;
}
public void setEggs(int e){

if(this.totalCookMinutes > 0){
throw new
RuntimeException("yuck");

}
this.eggs = e;

}
...

}

Questions

I Does it make sense to
change the number of eggs
after an omelet is cooked?

I Does it make sense to add
setCookMinutes(double)
to arbitrarily change
totalCookMinutes?

I Why use getters/setters?

Typically Fields are private

POmelet: Private fields
Provide getters to report fields
like eggs and cook time

public class POmelet{
private int eggs;
private double

totalCookMinutes;
...
public double getEggs(){

return this.eggs;
}
public double
getTotalCookMinutes(){

return this.eggs;
}
...

}

Use of Getters v. Private Fields

POmelet x=new POmelet(3,4);
// Correct
int eggs = x.getEggs();
// Error
x.eggs = 5; // No such symbol

x.cookFor(2.5);
// Correct
if(x.getTotalCookMinutes() > 0.0){

...
}
// Error
if(x.totalCookMinutes > 0.0){

...
}

Why Getters vs. Public Fields
I Simple objects can probably have public fields, direct access

I Don’t do this as you’ll be penalized on manual inspection
I Slightly more complex objects like OOOmelet might get away

with public fields but would allow ..
I "Uncooking" of omelets: o.totalCookMinutes = 0.0;
I Add eggs after being cooked
I POmelet with private fields prevents this

I Complex objects like Scanner must preserve invariants:
different parts must agree with each other.

I Changing one field might screw up another one
I Deny direct access via private fields
I Mutation methods like next() and setX(v) keep all fields

synchronized

Abstraction Up and Down
Break a problem into smaller parts. Define public methods
between those parts. Think about internal details for one part at a
time. Recurse for subparts as needed.

Scope and this
Name resolution rules don’t always require use of keyword this

Using this

public class POmelet{
private int eggs;
private double

totalCookMinutes;

public int getEggs(){
return this.eggs;

}
public void
cookFor(double cookMinutes){

this.totalCookMinutes
+= cookMinutes;

}
}

Without this

public class POmelet{
private int eggs;
private double

totalCookMinutes;

public int getEggs(){
return eggs;

}
public void
cookFor(double cookMinutes){

totalCookMinutes
+= cookMinutes;

}
}

Exercise static Methods the Best Omelet
I static is stand-alone, independent shared by all objects
I Write code for bestOmelet(arr)

public class OOOmelet{
// Return the "best" omelet in an array; better omelets have higher
// calorie counts as reported by the o.getBaseCalories() method. If
// the array is empty, return null.
public static OOOmelet bestOmelet(OOOmelet [] arr){...}

}

Welcome to DrJava.
> OOOmelet arr[] = {new OOOmelet(3,4), new OOOmelet(2,10),

new OOOmelet(8,2), new OOOmelet(3,3)};
> OOOmelet best = OOOmelet.bestOmelet(arr);
> best
2 eggs 10 oz cheese omelet, cooked for 0.0 minutes
> best.getBaseCalories()
1328
> OOOmelet empty[] = {};
> OOOmelet other = OOOmelet.bestOmelet(empty);
> other
null

Recall: Equality and ==

main(){
int li1=3, li2=3;
boolean eq1 = (li1 == li2); // T/F??

Integer bi1 = new Integer(4);
Integer bi2 = new Integer(4);
boolean eq2 = (bi1 == bi2); // T/F??

OOOmelet om1 = new OOOmelet(3,4);
OOOmelet om2 = new OOOmelet(3,4);
boolean eq3 = (om1 == om2); // T/F??

}

I Draw a memory diagram for the above main method
I Determine the values of eq1,eq2,eq3

x.equals(y) methods

I Provide a deep equality check of x to y
I What’s deep vs shallow?
I All objects have one. . . why?
I Most objects define their own
I Technical note: difference between

public boolean equals(Object other)
public boolean equals(Omelet other)

Exercise: Equality of Omelets

public class POmelet{
private int eggs; // How many eggs in the omelet
private int ozCheese; // How many ounces of chees
private String extraIngredients; // Extra ingredients added
private double totalCookMinutes; // How long the omelet has cooked

// Define me
public boolean equals(POmelet other){...}

I POmelet x and POmelet y
I x.equals(y) is true when

1. x and y have equal eggs (int)
2. and equal ozCheese (int)
3. and equal extraIngredients (String)

I 1 and 2 are easy
I 3 is slightly trickier
I Write the equality method

I Remember that x will be this, y will be other

Note: equals(..) is a funky method
I All classes automatically have an equals(Object o) method

due to inheritance
I Will discuss next week in detail, but all proper equals(..)

methods following the pattern mentioned in the spec

public class POmelet{
private int eggs, ozCheese;
private String extraIngredients;
private double totalCookMinutes;
public boolean(Object other){ // Compare to arbitrary object

if (! (other instanceof POmelet)) {
return false; // Not anothe omelet, can’t b equal

}
POmelet that = (POmelet) other; // Caste other to omelet
return // check relevant fields equal

this.eggs == that.eggs &&
this.ozCheese == that.ozCheese &&
this.extraIngredients.equals(that.extraIngredients);
// && this.totalCookMinutes == that.totalCookMinutes;

}
}

