CS 211: Defining Classes

Chris Kauffman

Week 3-2

Logistics

P2: Instant Runoff Voting

» Can anyone explain?

» Class decomposition

Topics Today
» Strategies for
VotingMachine methods

» Creating classes/objects
(project)

Reading

» Building Java Programs Ch 8
» Lab Manual Ch 4 and 5

Practicelt! BJP 3rd Ed
Exercises

» Ch 8 Exercise 18

» Ch 8 Exercise 20

» Ch 8 Exercise 21

» Ch 8 Exercise 22

http://practiceit.cs.washington.edu/problem.jsp?category=Building+Java+Programs%2C+3rd+edition%2FBJP3+Chapter+8&problem=bjp3-8-e18-classRectangle
http://practiceit.cs.washington.edu/problem.jsp?category%3DBuilding%2BJava%2BPrograms%252C%2B3rd%2Bedition%252FBJP3%2BChapter%2B8&problem%3Dbjp3-8-e20-containsRectangle
http://practiceit.cs.washington.edu/problem.jsp?category%3DBuilding%2BJava%2BPrograms,%2B3rd%2Bedition/BJP3%2BChapter%2B8&problem%3Dbjp3-8-e21-unionRectangle
http://practiceit.cs.washington.edu/problem.jsp?category%3DBuilding%2BJava%2BPrograms%252C%2B3rd%2Bedition%252FBJP3%2BChapter%2B8&problem%3Dbjp3-8-e22-intersectionRectangle

Aggregate Data

Define Now there's a type bleh, it looks like blah
Declare Here is a variable, its type is bleh

Assign Element foo of variable bar gets value blip
Access Retrieve element foo of variable bar

Arrays
Create Homogeneous Aggregate Data
» Each constituent element is the same type

» Access via number index: a[5] = something;

Classes
Define Heterogeneous Aggregate Data

» Constituent elements can be of different types
» Access via symbolic field name

a.fieldl = 1;
a.Xfiled = "init!";

Basic Objects are Just Data

Omelets in SOmelet. java, no static fields

public class SOmelet{
public int eggs;
public int ozCheese;
public String extralngredients;
public double totalCookMinutes;

}

main(){
SOmelet o = new SOmelet();
o.eggs = 3;
0.0zCheese = 4;
o.extralngredients = "";

System.out.println("Cooked "+o.totalCookMinutes);

Exercise: One Class, Many Objects
Draw a Memory Diagram for the main() method below at the
location indicated

main(){ public class SOmelet{
SOmelet small = new SOmelet(); public int eggs;
small.eggs = 2; public int ozCheese;
small.ozCheese = 3; public String extralngredients;
public double totalCookMinutes;
SOmelet big = new SOmelet(); }
big.eggs = 4;

big.ozCheese = 6;
SOmelet shallow = small;

SOmelet [] oa = new SOmelet[5];
for(int i=0; i<oa.length; i++){
oal[i] = new SOmelet();
oalil .eggs = i; oal[il].ozCheese = 2x*i;
}
// Draw memory diagram HERE

Typically Want to do stuff with data

» static Methods defined in SOmeletMethods. java

» Used in UseSOmelet. java (excerpt below)

// Create an omelet

SOmelet standard = SOmeletMethods.constructSOmelet();
// Calculate calories

calories= SOmeletMethods.getBaseCalories(standard);

// Cook an omelet

SOmeletMethods.cookFor (standard, 4.0);

// Cooked long enough?

safe = !SOmeletMethods.foodPoisoningIminent (standard) ;

Notice always invoking static method through SOmeletMethods
class (irritation)

Defining Static Methods on Objects

Take a reference to the object and do something with it; from
SOmeletMethods. java

// Cook an omelet for the given amount of time
public static void cookFor(SOmelet thisOmelet,
double cookMinutes){
thisOmelet.totalCookMinutes += cookMinutes;

3

// Determine if consumption of the given omelet is risky
public static
boolean foodPoisoningIminent (SOmelet thisOmelet){

return
thisOmelet.totalCookMinutes < 1.0 * thisOmelet.eggs;

Notice reference thisOmelet is always required (irritation)

Remember: SOmelet is unconventional

SOmelet. java and SOmeletMethods. java are weird
» Don't follow java convention
» Requires explicit reference thisOmelet in all methods

» Precludes dynamic dispatch (next week)

However
Static method approach clearly separates

» Data versus Functions acting on data

Easier to build understanding from there because..

Standard Java
Lets mix data and functions together and season with this

The "Normal" Way

> See 00Omelet. java

» No static methods or fields (except constants)

» Equivalent in most ways to SOmelete.java +
SOmeletMethods. java

public class 00Omeletq{
// No static fields
public int eggs;
public int ozCheese;
public String extralngredients;
public double totalCookMinutes;

// Constructors
public OOOmelet(int eggs, int ozCheese){ ... }
public 000melet({...}

// No static methods
public void addIngredient(String ingredient){...}
public void cookFor(double cookMinutes){...}

Methods

Discuss this: hidden parameter to method invocation

Standard: 00Omelet
public void

cookFor (double cookMinutes){

this.totalCookMinutes +=
cookMinutes;

public boolean
isBurned () {
return
this.totalCookMinutes
> 2.0 * this.eggs;
}

main(){
00Omelet oo =
new 000melet();
00.cookFor(4.0);
}

Static: SOmelet

public static void
cookFor (SOmelet thisOmelet,
double cookMinutes){
thisOmelet.totalCookMinutes +=
cookMinutes;

public static boolean
isBurned (SOmelet thisOmelet){
return
thisOmelet.totalCookMinutes
> 2.0 * thisOmelet.eggs;

main(){
SOmelet so =
SOmeletMethods.constructSOmelet () ;
SOmeletMethods.cookFor(so, 4.0);
}

Constructors
Weird methods that build an object but don't return it. Compare:

Standard Static
public class 000meletq{ public class SOmeletMethods {
public static SOmelet
public 0OOmelet(int eggs, constructSOmelet (int eggs,
int ozCheese){ int ozCheese){
// No allocation SOmelet thisOmelet = new SOmelet();
this.eggs = eggs; thisOmelet.eggs = eggs;
this.ozCheese = ozCheese; thisOmelet.ozCheese = ozCheese;
this.extralngredients = thisOmelet.extralngredients =
new String(""); new String("");
this.totalCookMinutes = 0.0; thisOmelet.totalCookMinutes = 0.0;
// No return return thisOmelet;
} }

Error Checking

Modify the constructor for 000melet to throw a
RuntimeException if eggs or ozCheese is a negative number.

Exercise: To String, or Not To String.

That is not a question. 'Tis almost always better to endure writing
a toString() method that prints a pretty version of the object.

Write toString() for 000melet
Welcome to DrJava.

>
>
3

w Vv

OV V V VvV

00Omelet standard = new 000melet();
System.out.println(standard.toString());
egg 4 oz cheese omelet, cooked for 0.0 minutes

standard.cookFor(2.3)
System.out.println(standard)
egg 4 oz cheese omelet, cooked for 2.3 minutes

000melet coronary = new 000melet(5,12);
coronary.addIngredient ("bacon") ;
coronary.cookFor (4.6785)
System.out.println(coronary)

egg 12 oz cheese omelet, cooked for 4.7 minutes

Don't touch that

Java enables Access Control for insides of classes
» Visibility of fields and methods to other stuff
» public, protected, none, private
» Put them in front of methods and fields
» Play with these in 000melet

Access Modifiers

Access Levels for Fields/Methods by other stuff

Modifier Class Package Subclass World

public Y Y Y Y
protected Y Y Y N
no modifier Y Y N N
private Y N N N

» Mostly concerned with public and private, read about
others on your own

» Most projects will specify required public methods, maybe
public fields

» Most of the time you are free to create additional private
methods and fields to accomplish your task

Official docs on access modifiers

http://docs.oracle.com/javase/tutorial/java/java00/accesscontrol.html
P J J J

http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Getter, Setter, Class Invariant
Common Java convention is to make all fields private and provide
getter and setter methods to change them

Getter/Setter for Eggs Questions

, .

public class 000melet{ Does it make sense to
public int eggs; change the number of eggs
public int ozCheese; after an omelet is cooked?

public double getEggsO{ » Does it ma.\ke sense to add
return this.eggs; setCookMinutes (double)
} to arbitrarily change

public void setEggs(int e){ totalCookMinutes?
if (this.totalCookMinutes > 0){
throw new
RuntimeException("yuck");

» Why use getters/setters?

}
this.eggs = e;
}

Typically Fields are private

POmelet: Private fields Use of Getters v. Private Fields
Provide getters to report fields
like eggs and cook time POmelet x=new POmelet(3,4);
// Correct
public class POmelet{ int eggs = x.getEggs();
private int eggs; // Error
private double x.eggs = 5; // No such symbol
totalCookMinutes;
<. x.cookFor(2.5);
public double getEggs(){ // Correct
return this.eggs; if (x.getTotalCookMinutes() > 0.0)
}
public double
getTotalCookMinutes (){ // Error
return this.eggs; if (x.totalCookMinutes > 0.0){
¥ :
}

Why Getters vs. Public Fields

» Simple objects can probably have public fields, direct access
» Don't do this as you'll be penalized on manual inspection
» Slightly more complex objects like 000melet might get away
with public fields but would allow ..

» "Uncooking" of omelets: o.totalCookMinutes = 0.0;
» Add eggs after being cooked
» POmelet with private fields prevents this

» Complex objects like Scanner must preserve invariants:
different parts must agree with each other.

» Changing one field might screw up another one

» Deny direct access via private fields

» Mutation methods like next () and setX(v) keep all fields
synchronized

Abstraction Up and Down

Break a problem into smaller parts. Define public methods
between those parts. Think about internal details for one part at a
time. Recurse for subparts as needed.

Scope and this

Name resolution rules don’t always require use of keyword this

Using this

public class POmelet{
private int eggs;
private double
totalCookMinutes;

public int getEggs(){
return this.eggs;
}
public void
cookFor (double cookMinutes)q{
this.totalCookMinutes
+= cookMinutes;

Without this

public class POmelet{
private int eggs;
private double
totalCookMinutes;

public int getEggs({
return eggs,
}
public void
cookFor (double cookMinutes){
totalCookMinutes
+= cookMinutes;

Exercise static Methods the Best Omelet

» static is stand-alone, independent shared by all objects
» Write code for bestOmelet (arr)

public class 00Omeletq{
// Return the "best" omelet in an array; better omelets have higher
// calorie counts as reported by the o.getBaseCalories() method. If
// the array is empty, return null.
public static 00Omelet bestOmelet(000melet [] arr){...}

}

Welcome to DrJava.

> 000melet arr[] = {new 000melet(3,4), new 000melet(2,10),
new 000melet(8,2), new 000melet(3,3)};

> 00Omelet best = 000melet.bestOmelet(arr);

> best

2 eggs 10 oz cheese omelet, cooked for 0.0 minutes

> best.getBaseCalories()

1328

> 000melet emptyl[]l = {};

> 000melet other = 000melet.bestOmelet (empty);

> other

null

Recall: Equality and ==

main(){
int 1i1=3, 1i2=3;
(1i1 == 1i2); // T/F7??

boolean eql

Integer bil = new Integer(4);
new Integer(4);
(bil == bi2); // T/F??

Integer bi2

boolean eq2

000melet oml = new 000melet(3,4);
00Omelet om2 = new 000melet(3,4);
boolean eq3 = (oml == om2); // T/F77?

» Draw a memory diagram for the above main method

» Determine the values of eql,eq2,eq3

x.equals(y) methods

v

Provide a deep equality check of x to y
What's deep vs shallow?

v

v

All objects have one... why?

v

Most objects define their own

v

Technical note: difference between

public boolean equals(Object other)
public boolean equals(Omelet other)

Exercise: Equality of Omelets

public class POmelet{
private int eggs; // How many eggs in the omelet
private int ozCheese; // How many ounces of chees
private String extralngredients; // Extra ingredients added
private double totalCookMinutes; // How long the omelet has cooked

// Define me
public boolean equals(POmelet other){...}

» POmelet x and POmelet y
> x.equals(y) is true when

1. x and y have equal eggs (int)
2. and equal ozCheese (int)
3. and equal extralngredients (String)

v

1 and 2 are easy

v

3 is slightly trickier
Write the equality method
» Remember that x will be this, y will be other

v

Note: equals(..) is a funky method

> All classes automatically have an equals(Object o) method
due to inheritance

» Will discuss next week in detail, but all proper equals(..)
methods following the pattern mentioned in the spec

public class POmelet{
private int eggs, ozCheese;
private String extralngredients;
private double totalCookMinutes;
public boolean(Object other){ // Compare to arbitrary object
if (! (other instanceof POmelet)) {
return false; // Not anothe omelet, can’t b equal
}
POmelet that = (POmelet) other; // Caste other to omelet
return // check relevant fields equal
this.eggs == that.eggs &&
this.ozCheese == that.ozCheese &&
this.extralngredients.equals(that.extralngredients);
// && this.totalCookMinutes == that.totalCookMinutes;

