CS 211: Methods, Memory, Equality

Chris Kauffman

Week 2-1

So far. ..

X Comments

v

v

X Statements/Expressions
H Variable Types
» little types, what about Big types?

v

v

X Assignment

B Basic Output (Input?)
X Conditionals (if-else)
X Iteration (loops)

v

v

v

v

B Aggregate data (arrays)

v

B Function Declarations (main)

v

0 Library System

Functions / Methods

Are parameterized code

v

Referred to as methods in java jargon

» Give me some stuff (arguments)

v

I'll give you something back (return value)

v

Java: specify types for arguments and return

v

User return to finish function and give value back

» Immediately ends function (even inside loop)
» Useful for project 1

Method Basics

Live inside classes, see MethodDemo . java

public class MethodDemof{

// Sum up an array
public static int sumIntArray(int all){
int sum = 0;
for(int i=0; i<a.length; i++){
sum += ali];
}
return sum;

¥

b

For now, use the magic word static for functions
» Omitting static changes the meaning of functions
significantly
» We'll start doing that soon

Legacy of the void

» Sometimes a method gives nothing as an answer.
» Return type is void
» In void methods, return is optiona

public static void downHere(){
System.out.println("Calling down here");
// no return required

}
static int aNumber = 0;

public static void maybelncrease(int myArg){
if (myArg <= 0){
return; // return immediately
}
aNumber++;
System.out.println(aNumber) ;
return; // optional return

Playing with Functions

It's easy to play with static functions in DrJava's interactive loop.
Make sure to use ClassName.functionName (param,parm2).

Welcome to DrJava. Working directory is ...
HighlyComposite.numDivisors(5)

HighlyComposite.numDivisors(6)

>
2
>
4
> HighlyComposite.numDivisors(8)

4

> HighlyComposite.highlyComposite(6)
true

> HighlyComposite.highlyComposite(8)
false

>

Early Exit from Code Blocks

» Based on structure of code, may want to end some execution
early

» break; immediately finishes the loop in which it is placed

» return; or return answer; immediately finishes the method
in which it appears

break Exits a Loop

int guess, correct = 22;
while(true){
guess = input.nextInt();
if (guess == correct){
System.out.println("You guessed right");
break;
}
System.out.println("You guessed wrong");

}

System.out.println("Game over");

There is also a continue which skips to the next loop iteration
which is sometimes useful

return Exits a Method

// Locate the index at which the integer
// query appears in the array arr; throw
// an exception if query is not present
public static int locate(int [] arr, int query){
for(int i=0; i<arr.length; i++){
if (arr[i] == query){
return i;
¥
b
throw
new RuntimeException("query "+query+" not in array");

What's the difference between #1 and #27

Defined Used

public static public static void

void doublerl(int x){ main(String args[]){
X = 2%X; int r = 10;

} int s[1 = {20%};

public static doubler1(r);

void doubler2(int x[]){ System.out.println(r);
x[0] = 2*x[0];

T doubler2(s);

System.out.println(s[0]);

» Code is in Doubler. java

» To understand the difference, we need to draw memory
diagrams of the function call stack and heap

Two Kinds of types: Primitive and References

Primitives

>

>

Little types are primitives

int, double, char,
boolean, long, short,
float...

Live directly inside a memory
cell

Each primitive type has its
own notion of a zero value:
know what they are as all
arrays are initialized to these
values

Only a small number of
primitive types, can't make
new ones

References

>

Big types including types
you'll create

String, Scanner, File,
Sauce, Exception, ...
And all arrays

Contents of memory cell
refer to another spot in
memory where the thing
actually resides

Usually refer to a heap
location

Identical to a pointer but
operations are limited

Have a single zero-value:
null which points nowhere

Another Tricky Example
What's the difference? What gets printed?

Defined Used
public static public static void
boolean intEqualsl(int x, main(String args[]1){
int y){ boolean result;
return x==y; int a=1, b=1;
} result = intEqualsi(a,b);

System.out.println(result);
public static

boolean intEquals2(int x[], int aa[]={20}, bb[]1={20};
int y[1){ result = intEquals2(aa,bb);
return x==y; System.out.println(result);
}

result = aa==bb;
System.out.println(result);

Equality
== does shallow comparisons: compare the contents of two
memory boxes.
» Many times this is not what is desired
» Instead want a deep comparison which compares multiple parts
» For that will typically have x.equals(y) methods
» Can also write static functions that do similar things

Array Equality
Write a function

public static boolean intArrayEquals(int x[], int y[])

which checks whether two integer arrays are deeply equal to one
another.
Write a function

public static boolean intArrayIldentical(int x[], int y[])

which checks whether two integer arrays are the same array.

Array and Function Practice

Good exercises: functions that manipulate arrays
» BJP4 Self-Check 7.28: arrayMystery5
» BJP4 Exercise 7.6: stdev
» BJP4 Exercise 7.12: pricelsRight
» BJP4 Exercise 7.13: longestSortedSequence

http://practiceit.cs.washington.edu/problem.jsp?category=Building+Java+Programs%2C+3rd+edition%2FBJP3+Chapter+7&problem=bjp3-7-s28-arrayMystery5
http://practiceit.cs.washington.edu/problem.jsp?category=Building+Java+Programs%2C+3rd+edition%2FBJP3+Chapter+7&problem=bjp3-7-e6-stdev
http://practiceit.cs.washington.edu/problem.jsp?category=Building+Java+Programs%2C+3rd+edition%2FBJP3+Chapter+7&problem=bjp3-7-e12-priceIsRight
http://practiceit.cs.washington.edu/problem.jsp?category=Building+Java+Programs%2C+3rd+edition%2FBJP3+Chapter+7&problem=bjp3-7-e13-longestSortedSequence

