
CS 211: Methods, Memory, Equality

Chris Kauffman

Week 2-1

So far. . .

I � Comments
I � Statements/Expressions
I � Variable Types

I little types, what about Big types?

I � Assignment
I � Basic Output (Input?)
I � Conditionals (if-else)
I � Iteration (loops)
I � Aggregate data (arrays)
I � Function Declarations (main)
I � Library System

Functions / Methods

Are parameterized code
I Referred to as methods in java jargon
I Give me some stuff (arguments)
I I’ll give you something back (return value)
I Java: specify types for arguments and return
I User return to finish function and give value back

I Immediately ends function (even inside loop)
I Useful for project 1

Method Basics
Live inside classes, see MethodDemo.java

public class MethodDemo{

// Sum up an array
public static int sumIntArray(int a[]){

int sum = 0;
for(int i=0; i<a.length; i++){

sum += a[i];
}
return sum;

}
...

}

For now, use the magic word static for functions
I Omitting static changes the meaning of functions

significantly
I We’ll start doing that soon

Legacy of the void
I Sometimes a method gives nothing as an answer.
I Return type is void
I In void methods, return is optional

public static void downHere(){
System.out.println("Calling down here");
// no return required

}

static int aNumber = 0;

public static void maybeIncrease(int myArg){
if(myArg <= 0){

return; // return immediately
}
aNumber++;
System.out.println(aNumber);
return; // optional return

}

Playing with Functions

It’s easy to play with static functions in DrJava’s interactive loop.
Make sure to use ClassName.functionName(param,parm2).

Welcome to DrJava. Working directory is ...
> HighlyComposite.numDivisors(5)
2
> HighlyComposite.numDivisors(6)
4
> HighlyComposite.numDivisors(8)
4
> HighlyComposite.highlyComposite(6)
true
> HighlyComposite.highlyComposite(8)
false
>

Early Exit from Code Blocks

I Based on structure of code, may want to end some execution
early

I break; immediately finishes the loop in which it is placed
I return; or return answer; immediately finishes the method

in which it appears

break Exits a Loop

int guess, correct = 22;
while(true){

guess = input.nextInt();
if(guess == correct){

System.out.println("You guessed right");
break;

}
System.out.println("You guessed wrong");

}
System.out.println("Game over");

There is also a continue which skips to the next loop iteration
which is sometimes useful

return Exits a Method

// Locate the index at which the integer
// query appears in the array arr; throw
// an exception if query is not present
public static int locate(int [] arr, int query){

for(int i=0; i<arr.length; i++){
if(arr[i] == query){

return i;
}

}
throw

new RuntimeException("query "+query+" not in array");
}

What’s the difference between #1 and #2?
Defined

public static
void doubler1(int x){

x = 2*x;
}

public static
void doubler2(int x[]){

x[0] = 2*x[0];
}

Used

public static void
main(String args[]){

int r = 10;
int s[] = {20};

doubler1(r);
System.out.println(r);

doubler2(s);
System.out.println(s[0]);

}

I Code is in Doubler.java
I To understand the difference, we need to draw memory

diagrams of the function call stack and heap

Two Kinds of types: Primitive and References
Primitives
I Little types are primitives
I int, double, char,

boolean, long, short,
float...

I Live directly inside a memory
cell

I Each primitive type has its
own notion of a zero value:
know what they are as all
arrays are initialized to these
values

I Only a small number of
primitive types, can’t make
new ones

References
I Big types including types

you’ll create
I String, Scanner, File,

Sauce, Exception, . . .
And all arrays

I Contents of memory cell
refer to another spot in
memory where the thing
actually resides

I Usually refer to a heap
location

I Identical to a pointer but
operations are limited

I Have a single zero-value:
null which points nowhere

Another Tricky Example
What’s the difference? What gets printed?

Defined

public static
boolean intEquals1(int x,

int y){
return x==y;

}

public static
boolean intEquals2(int x[],

int y[]){
return x==y;

}

Used

public static void
main(String args[]){

boolean result;
int a=1, b=1;
result = intEquals1(a,b);
System.out.println(result);

int aa[]={20}, bb[]={20};
result = intEquals2(aa,bb);
System.out.println(result);

result = aa==bb;
System.out.println(result);

}

Equality
== does shallow comparisons: compare the contents of two
memory boxes.
I Many times this is not what is desired
I Instead want a deep comparison which compares multiple parts
I For that will typically have x.equals(y) methods
I Can also write static functions that do similar things

Array Equality
Write a function

public static boolean intArrayEquals(int x[], int y[])

which checks whether two integer arrays are deeply equal to one
another.
Write a function

public static boolean intArrayIdentical(int x[], int y[])

which checks whether two integer arrays are the same array.

Array and Function Practice

Good exercises: functions that manipulate arrays
I BJP4 Self-Check 7.28: arrayMystery5
I BJP4 Exercise 7.6: stdev
I BJP4 Exercise 7.12: priceIsRight
I BJP4 Exercise 7.13: longestSortedSequence

http://practiceit.cs.washington.edu/problem.jsp?category=Building+Java+Programs%2C+3rd+edition%2FBJP3+Chapter+7&problem=bjp3-7-s28-arrayMystery5
http://practiceit.cs.washington.edu/problem.jsp?category=Building+Java+Programs%2C+3rd+edition%2FBJP3+Chapter+7&problem=bjp3-7-e6-stdev
http://practiceit.cs.washington.edu/problem.jsp?category=Building+Java+Programs%2C+3rd+edition%2FBJP3+Chapter+7&problem=bjp3-7-e12-priceIsRight
http://practiceit.cs.washington.edu/problem.jsp?category=Building+Java+Programs%2C+3rd+edition%2FBJP3+Chapter+7&problem=bjp3-7-e13-longestSortedSequence

