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Abstract

Since the introduction of the concept of “Digital Earth”, almost every major international city has been re-constructed in the virtual
world. A large volume of geometric models describing urban objects has become freely available in the public domain via software
like ArcGlobe and Google Earth. Although mostly created for visualization, these urban models can benefit many applications
beyond visualization including city scale evacuation planning and earth phenomenon simulations. However, these models are mostly
loosely structured and implicitly defined and require tedious manual preparation that usually takes weeks if not months before they
can be used. Designing algorithms that can robustly and efficiently handle unstructured urban models at the city scale becomes a
main technical challenge. In this paper, we present a framework that generates seamless 3D architectural models from 2D ground
plans with elevation and height information. These overlapping ground plans are commonly used in the current GIS software such
as ESRI ArcGIS and urban model synthesis methods to depict various components of buildings. Due to measurement and manual
errors, these ground plans usually contain small, sharp, and various (nearly) degenerate artifacts. In this paper, we show both
theoretically and empirically that our framework is efficient and numerically stable. Based on our review of the related work, we
believe this is the first work that attempts to automatically create 3D architectural meshes for simulation at the city level. With the
goal of providing greater benefit beyond visualization from this large volume of urban models, our initial results are encouraging.
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1. Introduction

Since the September 11 attacks in NYC in 2001; a toxic
sludge disaster in Hungary in 2010; and the recent nuclear
crisis in Fukushima, Japan, the ability to simulate large
scale phenomena in urban environments (see Fig. 1) has be-
come increasingly important to support scientific inquires
and decision making. While numerical-computational mod-
els have advanced to the stage of accurately simulating var-
ious types of dynamic phenomena and replicating the re-
ality, detailed geometric models representing the computa-
tion domain are still largely lacking [31,19].

Because of the collaborative efforts in the recent years, al-
most every building in the major US and international cities
has been re-constructed in the virtual world. Although
mostly created for visualization, these geometric models
describing urban objects can potentially benefit many ap-
plications beyond visualization including video games, city

scale evacuation planning, traffic simulation and natural or
man-made phenomenon simulations. However, these urban
models are mostly loosely structured and implicitly defined.
These models require tedious manual preparation that usu-
ally takes weeks if not months before they can be used for
simulation [19]. Therefore designing algorithms that can
robustly and efficiently handle unstructured urban models
at the city scale becomes a main technical challenge.

1.1. Problem Statement

Simulating large scale phenomena in urban environments
usually requires techniques such as Computational Fluid
Dynamics (CFD) to solve the Navier-Stokes equations nu-
merically [3] in a tessellation of the computational domain.
In this work, the computational domain is composed of a set
of urban models. The tessellation process usually requires
the computational domain to be represented as well-defined
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Fig. 1. A cloud is depicted at 3 different time instances in the inte-
grated Oklahoma City model. The cloud is transported and diffused
by the effects of the wind and turbulence. Clouds at 100 (top), 250
(mid) and 500 seconds (bottom) from the beginning of the release.

(a) Input: 2D view, P (b) Input: 3D view, e(P)

(c) Output: Seamless mesh, B (d) Remeshed for CFD

Fig. 2. An example input and output of our work.

surfaces without holes [30]. There are other approaches to
solve complex large urban areas without seamless surfaces,
such as porosity [8], or embedded models [7]. These ap-
proaches are not as accurate as the seamless models. The
main problem is the lack of well-defined surfaces to apply
the right boundary conditions.

In this paper, we present a framework that generates
seamless 3D architectural models (i.e., without boundary
openings) from 2D ground plans with elevation and height
information. These overlapping ground plans are commonly

used in the current GIS software such as ESRI ArcGIS and
urban model synthesis methods to depict various compo-
nents of buildings. Specifically, our input is a set of 2D
polygons P with elevation and height information. Each
polygon P ∈ P can be elevated and extruded to form a
3D component e(P ) of a building. Here, we use the func-
tion e(·) to denote the transformation. Then, the set e(P)
is a collection of components that implicitly represent the
3D shape of buildings. For visualization applications, it is
usually enough to keep the representation implicitly. How-
ever, to create simulation-ready representations our goal
is to produce seamless polyhedral meshes from P. Let us
denote these building meshes as B. An example in Figs. 2
(a-c) illustrates the problem that we will attempt to solve
in this work.

1.2. Main Challenges

Creating seamless models for simulation is an exten-
sively studied topic in the CAD community. Although, to
our knowledge, creating seamless urban models at the city
scale for simulation has not been done, it is no doubt that
these two problems share many similarities. One example
is performing robust boundary evaluation. Because the ur-
ban models are either generated (semi-)automatically from
LiDAR and satellite images or created manually by non-
experts, a quick analysis of the problem and its input data
will reveal many degenerate cases and numerical stability
issues in the boundary evaluation. Although the polygons
P usually have simple shapes, the arrangement of the poly-
gons and that of their 3D transformation e(P) usually con-
tain non-manifold geometries, sliver polygons, coplanar or
nearly coplanar faces, small features, and sharp and very
narrow gaps (see Fig. 3) because of the reconstruction and
man-made errors. Unlike CAD, urban models also implic-
itly represent plazas, roads, streets, or alleys as the void re-
gions between buildings. In many cases, these voids are cre-
ated intentionally, thus should not be removed. However,
some alleys or gaps between the buildings are too narrow.
This produces degenerate cases and unwanted geometries,
e.g., Fig. 3(a). These (nearly) degenerate cases not only hin-
der the boundary evaluation process, but also the efficiency
of the simulation using the extracted mesh. Therefore, it is
usually not enough to just consider each building individ-
ually. The relationship between the buildings should also
be taken into account. In addition, it is usually not enough
to design algorithms to cope with these degeneracies. It is
more desirable to remove these degeneracies to prevent cre-
ating an excessive number of small geometries that usually
do not provide any significance to result of the simulation
but greatly reduce the simulation efficiency.

Another main technical challenge is to design algorithms
that can both robustly and efficiently handle unstructured
urban models at this scale. The boundary evaluation pro-
cess in the boolean operations is known to be numerically
unstable, and a robust implementation is usually slow. In
particular, due to the scale of the problem, we have to per-
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(a) narrow gap

a

b

(b) almost coplanar faces a, b

(c) nonmanifold (d) sharp feature

Fig. 3. Examples of degenerate inputs.

form the operation on thousands of meshes representing
the buildings. For example, näıvely computing the union
and intersection between pairs of models can be inefficient.

1.3. Main Contributions

In this paper, we show both theoretically and empirically
that our framework for creating seamless 3D urban models
is efficient and numerically stable. In a nutshell, the pro-
posed framework achieves this goal by changing the repre-
sentation from the inputP to layers of disjoint polygons (see
Fig. 4). The core of framework is composed of two methods:
(1) k-way boolean operations with adaptively adjusted nu-
merical precision (Section 4) and (2) the Minkowski sum
operation using the reduced convolution (Section 5). The k-
way boolean operations merge polygon layers into a seam-
less model, and the Minkowski sum operation provides the
foundation for model repair. Our experimental results on
two datasets, New York City (5,397 buildings, Fig. 10) and
Oklahoma City (358 buildings, Figs. 1 and 12), show that
the proposed framework is fast, robust, and generates high
quality results. Based on our review of the related work,
we believe that this is the first work that attempts to cre-
ate 3D architectural meshes at the city level automatically
for simulation purposes. With the goal of providing greater
benefit beyond visualization from this large volume of ur-
ban models, our initial results are encouraging.

2. Related Work

To the best of our knowledge, no previous work has fo-
cused on automatically processing urban models for sim-
ulation. Existing research often resorts to laborious man-
ual manipulations of geometric data representing topogra-
phy and buildings. Without a method for automatic pre-
processing, this is generally necessary to produce a coher-
ent and consistent geometric representation of the surface,

including the landscape and buildings [19]. Although there
exist many methods to construct, simplify and aggregate
the models depicting the urban environments, almost all of
these methods focus on the issues from the rendering as-
pect [27,9,20]. For example, ideas, such as levels of detail
or texture mapping, based on the location of the view are
useful for rendering but these tricks are no longer applica-
ble to simulation.

An important step in the proposed work is to compute
the union or intersection of many models. The problem of
geometric boolean operations has been studied more than
three decades and the main focus of the research has been
on the robustness of the computation, because many nu-
merical errors and degenerate cases can result in incorrect
output. In addition to the robustness issues, one of the main
challenges that we face in this work is the scalability of the
boolean operation for city-scale urban models. A brief re-
view of the techniques are discussed below.

2.1. Urban Models Synthesis and Processing

Almost all methods for urban model synthesis and pro-
cessing focus on visualization. Most of these methods come
the from Computer Graphics and GIS communities. For ex-
ample, several methods based on procedural modeling focus
on creating large-scale urban models [36,33,32] or individ-
ual buildings [46,37,16]. Noticeably, Parish and Müller [36]
design two L-systems to procedurally construct streets and
the buildings. The L-system for creating the streets is sub-
ject to various global goals and local constraints specified
by the user via image maps. Like many manually generated
models, the models generated procedurally are usually not
suitable for simulation. There are also methods developed
to recover the 3D shape of roof surfaces, e.g., [16], and re-
cover building ground plans from aerial data [10], the dig-
itization and vectorization of cadastral maps or from sur-
veying measurements. Recently, methods have also been
proposed to extract ground plans from LiDAR data [34,18].

Because urban models tend to contain a large number
of simple shapes, Chang et al. [9] propose a simplification
method using the ideas from urban legibility in order to en-
hance and maintain the distinct features of a city, i.e., path,
edges, district, etc. Since their focus is on visualization, the
geometric errors generated due to simplification can be hid-
den from the viewers using various rendering techniques,
e.g., texture mapping. Also focused on urban visualization,
Cignoni [11] presents the BlockMaps strategy, which stores
distant geometric and textural information in a bitmap for
efficient rendering.

Other works on processing urban models can be found
in GIS community. However, most of these methods focus
on single buildings [28,41,43,25] and rarely focus on the
city-level ground plans. For example, recently, Kada and
Luo [25] simplify a building ground plan using the ideas
of reducing the number of lines in the arrangement. See a
survey in [27] for more related work.
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Little work focused on aggregating and simplifying large
scale models and this class of work tend to focus on ground
plans only. Wang and Doihara [44] cluster the buildings
using strategy similar to minimum spanning tree. Clus-
tered buildings are aggregated and simplified. Rainsford
and Mackaness [38] propose a template-based approach
that matches the rural buildings to a set of 9 templates. The
matched template is then deformed to fit the floor plan.
This method is limited by the number of templates used.

2.2. Geometric Boolean Operations

The problem of geometric boolean operations is exten-
sively studied because of their wide range of applications,
including linear programming, robotics, solid modeling,
molecular modeling, and geographic information systems.
The study of the boolean operations of planar objects goes
back to at least the early 1980s, when researchers were
interested in the union of rectangles or disks, motivated
by VLSI design, biochemistry, and other applications [1].
Starting in the mid 1990s, research on the complexity of the
booleans of geometric objects has shifted to the study of
instances in three and higher dimensions. The robustness
issue has since been studied in great depth [22,40,39,26].

There exist several tools to compute the booleans of two
polyhedra, such as CGAL [13] and Autodesk Maya. These
tools are designed to handle the operation of a small number
of geometries. However, the number of the building mod-
els that we will consider in this project can be much larger.
CGAL’s implementation is based on the Nef polyhedra [17].
Nef polyhedra is built on two critical data structures: a
sphere map for each vertex v capturing v’s local neighbor-
hood and the Selective Nef Complex (SNC) storing con-
nections between local sphere maps. Recently, Berstein and
Fussell [4] construct robust and fast Boolean operations us-
ing a plane-based and binary space partitioning (BSP) rep-
resentation. Experimental results show that it is 50 times
faster than the robust CGAL implementation and is only
twice slower than the fragile Maya method.

It is clear that the existing tools all suffer from vari-
ous computational issues, such as robustness and efficiency.
From our experience with the union operation of the ground
plans, a large number of intermediate geometries are gen-
erated during the computation but are later deleted during
or after the union process. These intermediate geometries
are removed because they are inside the boundary of the
final united geometry. This issue has long been ignored in
the literature as most implementations consider the union
operation as binary, which only takes two objects at a time.
In addition, while the complexity of the union is Θ(n2),
the union of the buildings will be of much lower complexity
because only a small subset of the buildings will intersect
each other. From this simple observation, we can cull a lot
of unnecessary computation by using some bounding vol-
ume hierarchy [21] or spatial hash table [42].

2.3. Model Repair

Mesh repair is an important step in the automatic con-
struction of city-scale urban models, due to the frequent
inaccuracies and defects of the input data. Several methods
have been developed, that are capable of correcting gaps,
holes, and inconsistent orientations without any user inter-
vention. These method can be classified into surface-based
[29], volumetric-based [23,6] and hybrid approaches [5].
Surface-based approaches, such as hole filling, are generally
the most efficient but do not provide output-guarantees and
have numeric instability. Volumetric-based methods use an
intermediate volumetric representation, such as octree, and
usually provide better quality. However, these methods can
be very inefficient and generate large outputs, and the in-
put’s structure and details may also be lost. Hybrid algo-
rithms attempt to maintain the quality and speed of sur-
face reconstruction, while providing the strong guarantees
of volumetric reconstruction. A more detailed summary of
mesh repair techniques can be found in a recent survey [24].

3. Overview of Our Method

The main idea of our method is to exploit the fact that
all components in our buildings are extruded from 2D poly-
gons. This allows us to develop a strategy similar to space
sweep, in which critical events representing the changes in
building’s shape are identified and handled either itera-
tively or in parallel. More specifically, if we can imagine a
plane that sweeps from the bottom to the top of a given
building, the intersection between the building and the
plane only changes at certain critical moments. We define
the critical events and the sweeping planes formally below.
Definition 1 Critical events {Ei} is an ordered list of z
coordinates representing the start (i.e., elevation) and the
end (i.e., elevation+height) of the polygons in P.
Definition 2 Sweeping plane The sweeping plane S is
an xy-plane moving from −z to +z along the z-axis. We
denote S(z) as placing S at z.

Our approach essentially converts the input polygons P
whose areas, elevations and heights may overlap into an-
other set of polygons I with disjoint interior. Although both
P and I represent the same building B, as we will see later,
using I allows us to construct seamless polyhedra and re-
move the artifacts of the building B much more easily than
using P. In fact, we can even remove some polygons from
I while still maintaining the structure of the building. In
Section 5, our model repair strategy is essentially based on
repairing the polygons of I. In the rest of this paper, we
will name I Invariant polygons.
Definition 3 Invariant polygons I. The i-th invariant
polygon Ii ∈ I is the intersection of e(P) and the sweeping
plane S at z, where Ei < z ≤ Ei+1. More specifically, Ii =⋃

P∈P e(P ) ∩ S(Ei+1).
Note that Ii is usually not simple and can contain mul-

tiple connected components. Moreover, since e(P )∩ S(Ei)
is either ∅ or P , Ii is simply the union of some subset of
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(a) e(P) (b) I (c) T (d) B

Fig. 4. (a) Input, e(P). (b) Invariant polygons, I. (c) Transition
polygons T . (d) Output, seamless building mesh B.

Algorithm 1. Build Seamless Building Mesh
1: procedure SeamlessBuilding(P, τ)
2: {Ei} ← Events(P, τ)
3: for all Ei do . Compute invariant polygons
4: Ii−1 =

⋃
P∈P e(P ) ∩ S(Ei) . see Section 4

5: Ii−1 ← Repair(Ii−1, τ) . see Section 5
6: Wi ← Sweep(Ii−1, Ei−1, Ei) . walls polygons

7: for all Ii do
8: Ti = Ii ∩ Ii+1 . see Section 4

9: return {Ti} ∪ I0 ∪ In−1 ∪ {Wi}

P. In order to construct a seamless model from I, we must
also construct transition polygons that “connect” consecu-
tive invariant polygons.
Definition 4 Transition polygons T . The i-th transi-
tion polygon Ti ∈ T is the intersection of Ii and the com-
plement of Ii+1 (projected on the the plane containing Ii),
i.e., Ti = Ii ∩ Ii+1.

Note that representing the complement Ii+1 of a polygon
Ii+1 can be easily accomplished by reversing the vertex
ordering of Ii+1. The definitions of I and T are illustrated
in Fig. 4.

Our method for constructing the seamless building mod-
els is sketched in Algorithm 1. In addition to the input poly-
gons P, Algorithm 1 also takes a user-specified tolerance
τ that will be used as the threshold to determine and re-
move artifacts in P. The value τ is also used in subroutine
Events to ensure that two consecutive layers are at least τ
units away. In most applications, τ is determined by the de-
sired precision in the simulation, e.g., simulation step size.
When there are n critical events, the seamless polyhedron
B of the building simply is composed of the polygons T , the
floor I0, the ceiling In−1 and the wall polygons swept by the
boundary of Ii between Ei and Ei+1. Note that the build-
ing polyhedronB remains seamless even when the polygons
of I are only an approximation of those in Def. 3 or when
some I are removed. The only step that requires more ro-
bust computation to ensure seamless output is in step 8.

Other steps can tolerate lower precisions. We will discuss a
new approach to provide this guarantee in Section 4.

4. 2D K-way Boolean Operations

Computing the invariant polygons requires the union of
a subset of P, and computing the transition polygons re-
quires the intersection of the components of two consecu-
tive invariant polygons. Traditionally, the union and inter-
section operations take only two input polygons, and the
boundary is determined by computing the arrangement of
the edges, which is a subdivision of the space into vertices,
edges and faces (cells) from a set of line segments (i.e.,
edges). One way to extract the boundaries from such an
arrangement is by finding all the faces that have positive
winding numbers [14,45]. When there are k inputs, the re-
sult is computed by iteratively applying the operations. The
main drawback of this approach is that many intermediate
geometries are generated and then thrown away during the
process [40]. In this section, we will discuss a more efficient
way to compute the k-way union (Section 4.1) and inter-
section (Section 4.2) of k polygons in a single step from
the implicitly represented line-segment arrangement of the
input polygons. To ensure the correctness of the output,
in Section 4.3, we develope a robust and efficient method
to compute the nearest segment intersection by adaptively
adjusting the numerical precision.

4.1. K-way Polygon Union

To simplify our notation, let {Pi} be a set of polygons and
Q be the boundary of the union of {Pi}, i.e., Q = ∂(

⋃
i Pi).

Our goal is to compute Q. For each polygon P , we denote
the vertices of P as {pi} and the edge that starts at ver-
tex pi as ei = pipi+1. The edge ei has two associated vec-
tors, the vector from pi to pi+1, i.e., vi = −−−−→pi pi+1 , and the
outward normal ni. The main idea of our approach is to
incrementally extract the orientable loops of the arrange-
ment induced from the edges of the input polygons. During
the extraction process, we repetitively extend the extracted
loop by maintaining its desired topological properties.

4.1.1. Orientable Loop
We say that a loop is orientable if all the normal direc-

tions of the edges in the loop are all either pointing inward
or outward. Note that the segments we considered are edges
from {Pi}, therefore, they are directional (as vertices in
{Pi} are ordered) and include normal directions pointing
outward.
Observation 5 We observe that the boundary of the union
must be an orientable loop (if it encloses an area, either
positive or negative).

Therefore, given two adjacent segments s = {u, v} and
s′ = {v, u′} sharing an end point v, we can check whether
s and s′ belong to an orientable loop if

(−→u v × ns) · (
−−→
v u′ × ns′) > 0 , (1)
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where nx is the normal vector of segment x, and × is the
cross product. If s and s′ satisfy Eq. 1, we say they are
compatible segments.

4.1.2. Boundary Orientable Loop Extraction
There can be many orientable loops in the arrangement.

We are only interested in finding those that can be a mem-
ber of Q, i.e., a boundary. We call these loops boundary
orientable loop.

To extract all boundary orientable loops, we start from
an arbitrary edge e that has not been considered. Our
method then proceeds by incrementally discovering the
compatible edges of a loop L from e. To abuse the nota-
tion a little bit, we let e be the latest edge of L discovered,
and let v be starting end point of e. In every incremental
step, our method will need to identify (1) the portion of e
and (2) the next compatible edge so that L remains on the
boundary of the union until all edges of L are discovered.

v

e

x0

x1

x2 x3a
b

c d
θ

Fig. 5. Given the last vertex v and a potential edge e discovered in
the extraction process, the segment vx0 must be an edge of L and
the next v is x0 and the next e is the edge containing x0c.

To identify the portion of e that contributes to L, let xj
be a sorted list of intersections between e and other line
segments ej 6= e in {Pi}. The intersections xj are sorted in
non-decreasing order using the distance to v. Therefore x0
is the intersection closest to v. See Fig. 5. Now we claim
that if we expand the loop by appending vx0 to L and
replacing e by the edge that makes the largest right turn
from the current edge e at x0, then L will remain on the
boundary of the union Q if there exist an edge of L is in Q.
This observation is proved by Lemma 6.
Lemma 6 The orientable loopL extracted must be a bound-
ary orientable loop if an edge of L is on Q.

PROOF. If L ever reachesQ, then we assume v is the first
vertex of L on Q. See Fig. 5. Assume that x0 is not on Q.
Then x0 must be interior to Q. Since we know that v is a
vertex of Q, when we move from v to x0, there must be a
point x′ ∈ Q before we reach the interior of Q. If we wish to
remain on the boundary of Q, we must move another edge
of Q at x′. Therefore, x′ must be an intersection of e and
another segment from {Pi}. However, we know that x0 is
the intersection closest v. This means x0 cannot be interior
to Q, and in fact x0 and x′ must be the same point and the
segment vx0 must be on Q. 2

Now, with e updated, we repeat the process until a closed
loop is found. Note that since we start from an arbitrary
edge, the loop may not close at the first edge of L. When
this happens we simply prune away edges of L that are not

part of the final loop since these edges cannot be on the
boundary.

4.1.3. Boundary Filtering
The orientable loops identified in the previous section

can only represent potential boundaries of the union if an
edge of the loop is on the boundary. Filters are needed to
determine the final boundaries. Our first filter is based on
the nesting relationships of the loops.
Observation 7 By definition, the simple polychains in a
polygon must obey the nesting property, i.e., the loops that
are directly enclosed by the external loop must be holes and
will have negative areas, and the loops that are directly en-
closed by the holes must have positive areas.

Because the loop-extraction step discussed above does
not allow loops to share an edge, all orientable loops we
generated are non-overlapping (i.e., they don’t intersect or
touch, except at vertices). Therefore, the nesting property
can be determined efficiently using a plane sweep algorithm,
e.g., [2], in O(n log n) time for n segments. Loops that do
not have proper nesting property are filtered.

Finally, in the second filter, we verify each nested loop
against the input polygons {Pi} to remove the rest of false
boundaries (if any). More specifically, for each hole bound-
ary L, we check if a point inside L is outside all polygons
{Pi}. If the check failed,L is a false loop. Since all orientable
loops form a superset of the final boundaries (Lemma 6)
and each loop is checked for its validity, the remaining loops
must correctly represent the boundaries of the k-way union
of {Pi}.

4.2. K-way Polygon Intersection

The k-way intersection can be computed in the same
way. Instead of making the largest right turns, we will make
the largest left turns at the nearest segment intersection,
and we filter false loops by determine if a point inside each
external loop is inside all polygons in {Pi}.

The proposed k-way union and intersection methods
have many advantages over the existing approaches. First,
in contrast to the traditional boolean operation approach,
the proposed method can handle arbitrary number of
elements in {Pi} at once without produce intermediate
geometries. Second, we do not have to compute the ar-
rangement of the input segments, i.e., we avoid computing
all the intersections for all the line segments in {Pi}.
Instead, we compute only the intersections of all er dis-
covered during the construction of Q. This is extremely
helpful when the size of {Pi} is large and the boundary
of Q has only a few features (edges and vertices). This
observation is usually true when the size of {Pi} is large
and for the architectural models in which many parts only
contribute a small portion to the external boundary. Be-
cause of this feature, our method is more sensitive to the
output complexity than the existing methods. Third, the
proposed method can handle degenerate cases easily, i.e.,
two polygons that touch at a single vertex or a line. The
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proposed approach can even handle non-simple polygon,
whose edges may self intersect, and polychains which do
not form a loop or enclose an area.

4.3. Robust and Efficient Nearest Segment Intersection

As we have seen earlier, the main step that we used to
determine the boundaries of the union and intersection is
to find the closest intersection to the boundary (e.g., an end
point or an edge) of a segment. A straightforward approach
is to compute all the intersections for a given segment, and
then the intersection that are closest to the given boundary
can be determined. However, computing the intersections
is known to be prone to numerical errors [35] and can be
inefficient if exact arithmetic is used to overcome the nu-
merical problems.

In this section, we will discuss our approach to handle
this problem. We will show that our approach can easily
identify precision inefficiency and dynamically increase the
numerical precision when needed. The proposed method is
similar to algorithms designed for the k-th order statistic
[12]. The main idea of our approach is to determine the
segments that will create the closest intersection without
computing the intersection.

Given a 2-d segment s, one end point p of s and a set
of 2-d segments S intersecting with s, our goal here is to
determine a segment t in S such that the intersection of t
is closer to p than other segments in S. That is, given s, p
and S, we try to solve the following:

arg min
t∈S

d(p, int(s, t)) , (2)

where d(x, y) is the distance between two points x and y,
and int(s, t) is the intersection between two segments s
and t. Note that since S are polygon edges, each segment
is directional and has a normal direction.

Instead solving Eq. 2 numerically, we approach the prob-
lem algorithmically. We use the visibility between a point
q ∈ s and t ∈ S to recursively determine the closest inter-
section. More specifically, we classify the visibility between
q and s as the value v of −→q r · tn, where r ∈ t is a point on
t and tn is the normal direction of t. If v is greater than
zero, we say q is visible to t. If v is zero, then q is invisible
to t. Otherwise, we say q is on t.

Now, our goal is to find a point q ∈ s that is invisible to
a segment but is visible to all the rest of the segments in
S. As described above, given any q ∈ s we can classify the
segments in S into three sets of segments: V, I, O, which
are visible, invisible, and on segments. If the set I contains
exactly one segment, then we have found our solution. If I
has more than one segment, then we let s = pq and S =
I and perform the classification recursively. If I is empty,
then we analyzeO and then V in a similar way in this order.
The only difference is that if O has more than one segment
then that means that all segments in O intersect s at q and
are equidistant to p. In this case, we will be looking for the
segment that makes the smallest angle to s. Again we can
use the idea of visibility to find this segment.

The point q ∈ s is determined in a way similar to binary
search. First the mid point of s is used as q. If the next
searching range is in I, then q is the mid point of p and q. If
the next searching range is in V, then q is the mid point of
q and p′ (the other end point of s). Now, for fixed-precision
floating-point computation, it is possible that there is not
enough precision to distinguish between the segments in S.
This happens when the size of S is greater than one while
the length of the search range collapses to zero. When this
happens, we dynamically increase the precision.

Analysis. The main step in our approach is the visibil-
ity test, which involves a dot product (two multiplications
and a summation). The asymptotic time complexity of the
proposed approach is O(n) for n segment in S which the
same as that of k-th order selection of n values. On the
contrary, the traditional approach that computes the (pa-
rameterized) intersection between two line segments will re-
quire two divisions, 14 multiplications and 10 summations
to compute the parameterizations of the intersection. As a
result much higher precision is needed for the traditional
approach. More importantly, the traditional approach has
no way to tell if the fixed-precision is enough to handle the
given input. Therefore, in order to provide error-free com-
putation, high-precision floating points are used regardless
the input configuration. Consequently, the traditional ap-
proach can be very slow. On the other hand, the proposed
method provides the same accuracy and robustness but is
more efficient.

5. Model Repair

Due to errors in the input polygons and their arrange-
ments in the space, many small features, and narrow gaps
can be generated. Removing these geometries in 3D can be
difficult [24]. Several volumetric-based methods have been
proposed to use mathematical morphology the repair the
models. In this section, we take the same approach but per-
form the operations in the continuous domain to avoid the
drawbacks of volumetric-based methods.

Since mathematical morphology is closely related to
Minkowski sum (M-sum), we will first discuss an efficient
method to compute the Minkowski sum in Section 5.1.
Then we will extend the Minkowski sum to compute the
“closing” operation in Section 5.2.

5.1. Minkowski Sum using Reduced Convolution

The M-sum of two shapes P andQ is defined as: P⊕Q =
{p + q | p ∈ P, q ∈ Q}. We propose a convolution-based
method to compute the M-sum of non-convex polygons.
Unlike the classic approach, e.g., [45], the proposed method
avoids computing (1) the complete convolution, (2) the ar-
rangement of the segments of the convolution, and (3) the
winding number for each arrangement cell. Our method
first computes a subset of the segments that is from the

7



(a) inputs (b) full convolution (c) reduced convolution (d) orientable loops (e) M-sum

Fig. 6. Steps for computing the M-sum of two simple polygons.

convolution of the inputs. We call this subset a “reduced
convolution” as illustrated in Fig. 6(d).
Definition 8 The convolution of two shapes P and Q, de-
noted as P ⊗Q, is the M-sum of the boundary, i.e., P ⊗Q =
∂P ⊕ ∂Q. If both P and Q are convex, ∂(P ⊕Q) = P ⊗Q.
Otherwise, it is necessary to trim the convolution to obtain
the M-sum boundary.
Definition 9 A reduced convolution is a set of convo-
lution segments pipi+1 ⊕ qj and pk ⊕ qlql+1 and qj and pk
must be convex.

Similar to the proposed k-way boolean operations, we
identify boundary orientable loops. These loops form po-
tential boundaries of the M-sum and are further filtered by
analyzing their nesting relationship. Finally, the remaining
boundaries are filtered by checking the intersections be-
tween the input polygons placed at the configurations along
these loops. Each of these steps is discussed in detail below.

5.1.1. Reduced Convolution
In the first step of the algorithm, we compute a subset

of the segments of the convolution based on the following
observation.

deP

vQ

c

b

a

b + vQ

a + vQ

a + c

b + c

Fig. 7. Figures used in the proof of Observation 10. The shaded areas
indicate the internal of the polygons.

Observation 10 Given a convolution segment s = ei ⊕ q
of an edge ei ∈ P and a vertex q ∈ Q, if q is a reflex vertex,
s must not be a boundary of the M-sum of P and Q. This
observation remains true if s = p ⊕ ej, where p ∈ P is a
reflex vertex and ej ∈ Q is an edge.

PROOF. Assume that vQ is convex, and eP and vQ are
compatible. An example of eP = ab and vQ is shown in

Fig. 7(a). In the figure, vQ is adjacent to two vertices c and
d. Now, let us consider the Minkowski sum locally involving
only eP = ab, cvQ and vQd, which are shown in Fig. 7(b).
First, one should see that the segment s has end points
a+ vQ and b+ vQ. In this case, the segment s is locally on
the boundary of the Minkowski sum because all other seg-
ments (i.e., (a+ vQ)(a+ c), (b+ vQ)(b+ c), (a+ c)(b+ c),
etc.) are interior to s. Therefore, the question becomes: if
we increase the internal angle of vQ while maintaining the
compatibility of eP and vQ, when will s become an interior
segment?

First, observe that when the internal angle of vQ in-

creases, the segment (a+ c)(b+ c) and s become closer.
Moreover, when c, vQ, d are collinear, they must be also
parallel to eP (otherwise eP and vQ are not compatible),

thus, (a+ c)(b+ c) and s overlap. When the internal angle
of vQ increases more, vQ becomes reflex and the segment s

becomes interior to (a+ c)(b+ c). Therefore, if vQ is reflex,
s must not be on the boundary. 2

Because of the definition of a reflex angle, the number
of edges that are compatible with any convex vertex in Q
form a lower bound on the number of edges compatible
with any reflex vertex in Q. Due to this, the number of seg-
ments filtered by Observation 10 is significant. An example
of this is demonstrated in Fig. 6. Figs. 5 and 6(b) show the
input polygons and the full convolution of the inputs, re-
spectively. Fig. 6(c) demonstrates the reduced convolution
of the same imput polygons, in which there are are signifi-
cantly fewer convolution edges.

5.1.2. Boundary Orientable Loop Extraction
Now, since the segments that we will be working with are

no longer a complete convolution, we cannot apply the idea
of computing the winding number for each arrangement
cell to extract the M-sum boundary as done in [45]. Note
that the segments we considered are edges from P and Q,
therefore, they are directional (as vertices in P and Q are
ordered) and include normal directions pointing outward
(to P or Q). Therefore, we proceed as the k-way boolean
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operations by extracting the boundary orientable loops dis-
cussed in Section 4.1.2.

5.1.3. Boundary Filtering
As discussed in Section 4.1.3, the loops extracted are

potential boundary loops. For example, the polygon in
Fig. 6(d) has an improperly nested loop (positive area in-
side positive area) that must be removed; once the loop is
removed, we get the correct M-sum as seen in Fig. 6(e).

So far, we have introduced three quite efficient filters.
Unfortunately, some of the remaining loops may not be
boundaries of the M-sum. These false loops are the direct
result from the filters that exploit only local topological
properties on the convolution. Therefore, we will have to
resort to collision detection, a global operation, to remove
all the false loops. Given a translational robot P and ob-
stacles Q, the contact space of P and Q can be represented
as ∂((−P )⊕Q), where −P = {−p | p ∈ P}. If a point x is
on the boundary of the M-sum of two polygons P and Q,
then the following condition must be true:

(−P ◦ + x) ∩Q◦ = ∅ ,

where Q◦ is the open set of Q and (P + x) denotes trans-
lating P to x.

Although there are many methods to optimize the com-
putation time for collision detection, collision detection is
more time consuming than the previous filters. Fortunately,
only a single collision detection is needed to reject or accept
a loop based on the following lemma.
Lemma 11 All the points on a false hole loop must make
P collide with Q.

PROOF. LetA be the arrangement of the segments in the
complete convolution. Let ` be a hole loop extracted using
our method. It is guaranteed that `must be empty since we
always make the largest right turns when we trace the hole
(note that this may not be true if ` is not a hole, i.e., when
` encloses a positive area, e.g., Fig. 6(d)). Since ` is empty,
we know that ` ⊂ A. Furthermore, since we know that all
vertices in each cell of A must to have the same winding
number [45]. Therefore, we know that all points on ` will
have the same winding number. If ` is a false loop, then all
points on ` will have positive winding numbers, thus, are
all interior to the Minkowski sum boundary. This means
that all the points on a false hole loop must make P collide
with Q. 2

5.2. Mathematical Morphology

It is a common practice to remove small gaps and sharp
features by performing mathematical morphology opera-
tions, such as erosion and dilation. These operations are
usually done in a discretized domain by converting the poly-
gons or polyhedra into pixels or voxels. This approach is
usually robust, but well-known issues include the difficulty
of choosing a good discretization resolution, space and time
inefficiency and the loss of data fidelity.

We extend the proposed Minkowski sum method using
reduced convolution to compute the “closing” operation.
The closing operation is the application of dilation and then
erosion to the model. Given two polygons P and Q, the
dilation operation is simply the Minkowski sum of P and
Q. The erosion operation denoted as P 	 Q can also be

computed using Minkowski sum: P 	Q = P ⊕Q, where X
is the complement of a setX. The complement of a polygon
P is simply a polygon with reverse ordering of P ’s vertices.
Finally, the closing operation of P and Q is defined as

P •Q = (P ⊕Q)	Q .

The proposed closing method operates directly on the poly-
gons thus avoiding the aforementioned issues. A straight-
forward approach is to compute the Minkowski sum twice
using definition above. Fig. 9 shows three examples that
are commonly seen in our dataset.

We observe that the second Minkowski sum can be
avoided if Q is a small circle. If Q is a small circle, the con-
volution for computing P ⊕ Q can be easily obtained by
translating each edge e of P by the amount of Q’s radius
along e’s outward normal, and replacing each convex ver-
tex v of P with an arc of Q connecting v’s incident edges.
Once we have the convolution, the boundary of P ⊕Q can
be obtained using the method discussed in Section 5.1. In
order to compute P • Q, we will have to apply another
Minkowski sum operation on the complement of P ⊕ Q.
However, we observe that the erosion operation can simply
be done reversing the dilation process. That is, for a given
loop L of P ⊕ Q, we identify the origin of each edge of L.
If the edge is an edge of P , we translate the edge back.
The rest of edges that form (partial) arcs must be from the
vertices of P . We replace each arc with its original point.

d

b

c

e

q
p
r

a

Fig. 8. closing operation

Next the vertices of P • Q
can also be determined. Let’s
analyze the vertices of the
loop. These vertices can only
come from two sources. The
vertices can either be created
by the sum of a vertex of P
and a vertex of Q, or from the
intersection of edges (of the
convolution). The first type of
vertex (e.g., a in Fig. 8) is au-
tomatically generated when the edges of P ⊕Q are trans-
lated back. The second type of vertex requires more atten-
tion. We observe that the intersection can come from three
sources: (1) the intersection of two edges of P (e.g., d in
Fig. 8), (2) the intersection of an edge of P and a vertex arc
(e.g., c in Fig. 8), and (3) the intersection of two arcs (e.g.,
b in Fig. 8). In erosion, when edges are moved back and arcs
are shrunk to points, these intersections may disappear. In
the first case, if the intersection disappears, the edges of P
are then connected via their boundary end points. In the
second case, the vertex is connected to the closest point on
the edge (e.g., r to e in Fig. 8). In the third case, two ver-
tices of P are simply connected (e.g., p to q in Fig. 8).
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(a) (b) (c)

Fig. 9. Before (top row) and after (bottom row) the application of
the closing operation. (a) Narrow gap between two buildings. (b)
Non-manifold vertex. (c) Narrow gap within the building.

Fig. 10. Seamless NYC (south of Central Park). There are 1,161,850
vertices, 2,310,610 triangles, and 5,397 buildings in this example.
The input composed of 45,496 polygons.

6. Results

Our framework is implemented in C++. The exact num-
ber type uses MPFR [15]. We use two examples, New York
City (NYC, 5,397 buildings) and Downtown Oklahoma
City (OKC, 357 buildings), shown in Figs. 10 and 12, to
demonstrate the results of the proposed method.

The total running time for generating the seamless mod-
els for NYC in Fig. 10 is 119 seconds (about 2 minutes).
The total running time for generating the seamless mod-
els for Downtown OKC in Fig. 10 is 7.2 seconds. All these
experiments are performed on a dual core 2.54 GHz Intel
CPU. The reported running times are based on our initial
implementation, whose efficiency can still be significantly
improved, e.g., using parallelization and ideas from broad-
phase collision detection.

To show the significance of our results, we compare our
results to Maya 2010 and a volumetric approach using
Marching Cube. We use a building from NYC composed
of 37 components. The results are shown in Fig. 11. Our
method produces the result shown in Fig. 11(a) in 105
milliseconds. Fig. 11(b) shows the best result using Maya
as Maya produces completely incorrect output when more
components are added to Fig. 11(b). Finally, we compare
to the result generated using distance field and a March-
ing Cube method (from VCG library) shown in Fig. 11(c).

(a) Our result (b) Maya (c) Marching Cube

Fig. 11. Comparing to results from Maya and Marching Cube.

(a) Oklahoma City (b) (c)

Fig. 12. In total 358 ground plans are represented in this image.
The ground plans are created from 1454 footprints. Two interesting
regions are highlighted.

Although the quality of the mesh can be improved using
better Marching Cube variants, this volumetric approach
takes several minutes and produces an excessive number
of polygons (138,288 triangles for a 150×150×150 grid).
Thus, the volumetric approach is clearly not scalable to
the city-scale problem considered in this work. No results
are shown for CGAL because CGAL Nef polyhedra cannot
handle our extruded meshes.

We also compare the proposed method to CGAL’s robust
2D boolean operations package. We setup the experiment
by generating the lowest invariant polygons (i.e., ground
plans) of the entire OKC by computing the union of 1,454
footprints. The results are shown in Fig. 12. Since CGAL’s
union operation takes only two polygons, we compute the
ground plans by incrementally adding each of the footprints
to its current union. Both approaches generate the same
result. Our approach takes 124 milliseconds to generate all
ground plans, and the incremental approach using CGAL
takes 55,516 milliseconds.

To further verify our method, we show that the seam-
less meshes can be readily remeshed for CFD simulations.
Fig. 13 shows our results zoomed into the area near the
financial district in NYC dataset, and Fig. 14 shows the
entire OKC dataset. We used the identified ground plans
(Fig. 12) to merge the seamless surface of the buildings and
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(a) Input

(b) Seamless meshes

(c) Remeshed for CFD

Fig. 13. An area of Fig. 10 near the financial district in NYC.

the surface terrain from DEM and obtain a computational
domain suitable as input for CFD models. We simulate a
hypothetical transport and dispersion event using FEFLO-
Urban [31]. A simulation of the flow, and the transport and
dispersion of a gas was performed using the volume mesh
produced with the proposed data processing methodology.
Figs. 1 and 14 show snapshots of air pollutant dispersion
simulation in the integrated OKC model.

7. Conclusion

We developed the first known framework to construct
seamless 3D building models from 2.5D ground plans. Our
main idea to provide both efficiency and robustness is to
generate polygon layers, repair the layers and then stitch

Fig. 14. Using the OKC dataset for pollutant dispersion simulation.
(top) Input meshes. (mid) CFD meshes integrated with DEM terrain
data. (bottom) A simulation snapshot.

the layers into seamless models. The core methods for
stitching and repairing are a k-way boolean operation and
a Minkowski sum operation, respectively. Finally, we show
both theoretically and empirically that our framework is
efficient and numerically stable.

Limitations and Future Work. A main limitation of
the proposed method is that, despite the effort to remove
small and sharp features, sliver triangles can still be found
in our output mesh. Another limitation is that our method
can only handle extruded polygons. We are currently ex-
tending the proposed work to handle more general 3D ur-
ban models, such as those from Google Earth. Finally, we
are interested in developing statistical methods to better
visualize the simulation data and urban models.
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