Approximate Convex Decomposition of Polyhedra

Jyh-Ming Liert
George Mason University

Nancy M. Amatd
Texas A&M University

Abstract

Decomposition is a technique commonly used to partition complex
models into simpler components. While decomposition into convex
components results in pieces that are easy to process, such decom-
positions can be costly to construct and can result in representations
with an unmanageable number of components. In this paper we ex-
plore an alternative partitioning strategy that decomposes a given
model into “approximately convex” pieces that may provide similar
benefits as convex components, while the resulting decomposition
is both significantly smaller (typically by orders of magnitude) and
can be computed more efficiently. Indeed, for many applications,
an approximate convex decompositiox€) can more accurately
represent the important structural features of the model by provid-
ing a mechanism for ignoring less significant features, such as sur-
face texture. We describe a technique for computiogs of three-
dimensional polyhedral solids and surfaces of arbitrary genus. We
provide results illustrating that our approach results in high quality
decompositions with very few components and applications show-
ing that comparable or better results can be obtained usipgde-
compositions in place of exact convex decompositia&sD) that

are several orders of magnitude larger.

Figure 1: The approximate convex decompositionsn) of the
Armadillo model consists of a small number of nearly convex com-
ponents that characterize the important features of the models bet-
ter than the exact convex decompositioes) that have orders of
magnitude more components. The Armadillo model (500K edges,
12.1MB) has a solichcD with 98 components (14.2MB) that can

be computed in 232 seconds while the satiddb has more than
726,240 components (20+ GB) and could not be completed because
the disk space was exhausted after nearly 4 hours of computation.

CR Categories: 1.3.5 [COMPUTER GRAPHICS]: Computa-
tional Geometry and Object Modeling—Geometric algorithms, lan-

guages, and systems the original polyhedron, ansurfacedecompositions, which parti-

tion the surface of the polyhedron into a collection of convex sur-
face patches. For example, a satidp of the Armadillo model has
more than 726,240 components (see Figure 1). Similar statistics for
additional models are show in Table 1 in Section 6.

Keywords: concavity measurement, convex decomposition

1 Introduction _ -
Our Approach. In this work, we explore a partitioning strategy that

One common strategy for dealing with large, complex models is to decomposes a polyhedron irfapproximately convexpieces. Our
decompose them into components that are easier to process. Manynotivation is that for many applications, the approximately convex
different decomposition methods have been proposed — see, e_g.gomponents of this dgcomposﬂmp provide S|m|I.a'r bgneflts as con-
Chazelle and Palios [1994] for a brief review of some common VeX components, V\(hlle the resulting decomposmon_ is both signif-
strategies. Of these, decomposition into convex components hascantly smaller (typically by several orders of magnitude) and can
been of great interest because many algorithms, such as collisionPe computed more efficiently. These advantages have been proven
detection and mesh generation, perform more efficiently on con- theoretically and experimentally for planar polygons by Lien and
vex objects. Convex decomposition of polygons is a well stud- Amato [2004]. In this paper we show that, unlikep, itis feasible
ied problem and has optimal solutions under different criteria; see {0 @pply the concept of approximate convex decompositaj
[Keil 2000] for a good survey. In contrast, convex decomposition t0 three-dimensional polyhedra. In particular, we describe
in three-dimensions is far less understood and, despite the practical practical methods for computing a solid or surfa@ of a
motivation, little research on convex decomposition of polyhedra polyhedron of arbitrary genus.
has gone beyond the theoretical stage [Chazelle et al. 1995].
A mai that d i f volvhed tOur general strategy is to iterati_vgly identify the most concave fea-

major reason that convex decompositions of polynedra are not y,,re(s) in the current decomposition, and then to partition the poly-
umsggelr:c’reag“:&s'(‘:’gi]y és tg‘:égge% s;%:qoé)pézzt'gzl égrst(forﬂ)plex hedron so that the concavity of the identified features is reduced.
construct andxcan reSLYIt)i(n a reprgseHation with an unmar)llageabI%—Q\I,Sé par‘ggngag?g tg:)unecz\tji?;” ﬁ (!.coumnﬁlo ?ﬁer\;s;:]etr;%:veef(ogﬁgilgﬁ !
number of components. This is true for batlid decompositions, \yhich is a tunable parameter. While this follows the general ap-
which consist of a collection of convex volumes whose union equals proach used successfully for polygons, there are several opeatio
that were straight forward for polygons but which become nontriv-
ial for polyhedra. The main challenges include computing the con-
cavity of a feature for a polyhedra and resolving concave features to
generate small and high quality decomposition. To deal with these
technical challenges in 3D, we introduce a new technique:

*Department of Computer Science, e-mail;jmlien@cs.gmu.edu
tDepartment of Computer Science, e-mail:amato@cs.tamu.ed

e approximate feature groupinghat enables sets of features to
be processed together, which is both more efficient and pro-
duces better results.

We demonstrate the feasibility of our approach by applying it to

Figure 2: AcD provides a simpler representation of the dragon (tetrahedral mesh) (deformation)

model using the convex hulls (slightly separated) of its components. _ . o
Figure 4: Atetrahedral mesh is generated from the (simplified) con-

vex hulls ofAcD components. The rightmost figure shows a defor-
mation using this mesh.

Figure 3: A difficult motion planning problem (a) in which the robot

is required to pass through a narrow passage to move from the start
to the goal. In (b), a uniform sampling of 200 collision-free con-
figurations fails to connect the start to the goal. In contrast, in (d),
placing 200 samples around the openings ofahe of the envi-
ronment (c) successfully connects the start to the goal. The solution
path is shown in (a). See ‘Motion planning’ in Section 7 for detail.

Figure 5: Snap shots of a system of 10,000 particles using the full
model and the convex hulls of thecD components. In this simu-

a number of complex models. In general, even for very complex lation, usingacp (lower row) is 2 times faster than using the full
models, theacds have very few components, typically several or- model (upper row) without introducing evident errors.

ders of magnitude fewer than tiecDs. The size (memory) and

computational time are also significantly less, particularly for the

solid AcDs; see Figure 1. tures) if they have internal angles greater th&f°. We sayP; is a

1d lik hasize th . id component of? if P; C P. A set of component§P; } is adecom-
We would like to emphasize thaCD aims to provide an approx- ;sitionof P if their union is P and all P; are interior disjoint, i.e.,
imate representation of the original shape using a set of convex{P_} must satisfy:

components. Thus, unlike the part-based segmentations using au-
tomatic [Rom and Medioni 1994; Wu and Levine 1997; Mangan D D .. po o _

and Whitaker 1999; Li et al. 2001; Dey et al. 2003; Katz and Tal D(P) ={P:|WiPs = Pand¥iz; Py O P7 =0} (1)
2003; Goswami et al. 2006; Lai et al. 2006] or (semi-)interactive
[Funkhouser et al. 2004; Lee et al. 2005; Liu et al. 2006] ap-
proaches, the main goal atD is in fact closer to that of the work
on shape approximation [Wu and Levine 1994; Cohen-Steiner et al. For some applications, considering only the surface of a model is of
2004; Yamauchi et al. 2005]. While most shape approximations interest. We sayP; is aconvex surface patodf P if P, C 9P and
focused on mesheac provides both solid and surface approxi- lies entirely on the surface of its convex hiillp,, i.e.,P; C 9Hp,
mations. [Chazelle et al. 1995]. Aconvex surface decompositiaf P is

L L . a decomposition o P that contains only convex surface compo-
Applications of AcD. In many applications, the detailed features of onts.

the model are not crucial and in fact considering them could serve

to obscure important structural features and add to the processingSaliency. ACD decomposes a model by prioritizing salient features.
cost. In such cases, an approximate representation of the modelCurvature is known to be the most popular tool to evaluate fea-
such as our proposext, that captures the key structural features ture saliency, e.g., for non-photorealistic rendering [DeCarlo et al.
would be preferable. For example, theD of the Armadillo model 2003], texture mapping fevy et al. 2002], and shape segmenta-
in Figure 1 identifies anatomical features much better thae tize tion [Funkhouser et al. 2004]. However, estimating curvature of
Other applications okcD include shape approximation (Figure 2), an entire model is difficult. Expensive preprocessing, such as mesh
motion planning (Figure 3), mesh generation (Figure 4), and point smoothing, simplification [Katz and Tal 2003] and function approx-
location (Figure 5). imation [Ohtake et al. 2004], or post-processing, such as Hysteresis
thresholding [Hubeli and Gross 2001], are generally required. De-
spite its ability to identifysurfacefeatures, e.g., crest, we believe
that curvature, by itself, is not sufficient to identsyructural fea-
tures. ThusAcD usesconcavityto identify salient features.

where P! is the open set of;. A convex decompositioof P is a
decomposition of? that contains only convex components.

2 Preliminaries

A model P in R? or R? is represented by a set of boundaris?.
The convex hullof a model P, CHp, is the smallest convex set Concavity. In contrast to measures like area and volume, concavity
enclosingP. P is said to beconvexif P = CHp. Features of does not have a well accepted definition. A few methods have been
P (vertices inR? and edges iiR?) are notches(non-convex fea- proposed that attempt to define and measure the concavity of poly-

gons [Sklansky 1972; Lien and Amato 2004]. To our knowledge, Thus, amACDg is simply an exact convex decomposition.

no concavity measure has been proposed for polyhedra.
An ACD is generated by recursively removinggolving concave

AlthoughAcD is not restricted to a particular measure, all the mea- features in order of decreasing significance, i.e., concavity, until
sures we consider in this work define the concavity of a métas all remaining components have concavity less than some desired
the maximum concavity of its boundary points, i.e., bound. This strategy is outlined in Algorithm 1.

concavity(P) = irég}}g{concawty(x)} , Algorithm T ACD(P, 7)

Input. A model, P, and tolerancer.

wherez are the vertices oP. An important consequence of this

el : . . : Output. A decomposition, {Pi}, such that
decision is that now we can use points with maximum concavity to (P} <
identify important features where decomposition can occur. This max{concavity(F;)} < 7. ,
: 1: if concavity (P) < 7 then > see Sections 4.1 and 5

would not be the case if we choose to sum concavities or use the

convexitymeasurement in [Zunic and Rosin 2002], where the con- g e|sereturnP
H H : volume (P .
vexity of a modelP is defined a vo?uhrlnc?;lp) y: 4: Letx be afeature (notch) realizingncavity (P)
. . . 5: {P;} = resolve(P,x) > see Sections 4.2 and 4.3
Concavity can be combined with other measures, e.g., curvature .
. . e X : Ve 6: for each componeritP;} do
or convexity, to provide more sophisticated saliency identification. 7 ACD(P;,7)

For exampleAcD can combine concavity and convexity to focus
on both deep and large features, e.g., to ignore wide but shallow or

deep but narrow tunnels in a model. As we will see later (Section 4), The two main operations required in Algorithm 1 fecp are:

we combine concavity and curvature for better feature grouping.))
e measuring the concavity of a feature(s), and

Measuring Concavity. Intuitively, one can think of the concavity e resolving specified concave feature(s).
measurement as the length of the path traveled by a poin®o P
during the process of inflating a balloon of the shapé afntil the 3.1 Measuring Concave Features

balloon assumes the shape@H . Although a physically based
simulation of thisballoon expansioiikent et al. 1992] can be ex- scp measures the concavity as the distance from a feature to its

pensive, we will show later that's traveling distance can be effi- gs5ciated bridge. Unfortunately, unlike polygons, there is no triv-
ciently approximated. ial one-to-one bridge/pocket matching for polyhedra. The problem

In particular, our concavity measures use the conceptwidfjes of obtaining the b_ridge/pocket relationship is closely_ rela_ted to the
and pockets Bridges are convex hull facets that connect non- Problem of spherical [Praun and Hoppe 2003] and simplical [Kho-
adjacent vertices @iP, i.e., BRIDGES(P) = 0C Hp\dP. Pock- dakovsky et al. 2003] parameterization. However, mesh parameter-
ets are the portion of the bounday that is not on the convex hull ization is costly to compute. Polyhedron realization [Shapiro and
boundarydC Hp, i.e., POCKETS(P) = P \ 0CHp. Tal 1998] that transforms a polyhedréhto a convex objecH can

] _ be computed efficiently, bufl is generally not the convex hull of
Because concave features, i.e., notches, can only be found in pock P and cannot be determined before performing the transformation.

ets we measure the concavity of a noichy . i . } .
In addition, while SL-concavity can still be computed efficiently,

e associating each bridge with a unique pocket, and the best known methods for computing shortest paths on polyhedra
e computing the distance fromto its associated bridge.. i.e., require exponential time [Sharir and Schorr 1986] and even meth-
concavity (z) = dist(z, CHp) = dist(z, 52). ods [Choi et al. 1997] that approximate the shortest paths are too
For polygons, there is a natural one-to-one bridge/pocket matching inefficient to be used in our approach. We use only SL-concavity in
that can be obtained easily. Also, in this case, Lien and Amato this paper.
[2004] proposed two practical methods to compute the concavity:
SL- and SP-concavity. SL-concavity is the straight-line distance to 3.2 Resolving Concave Features
the bridge. SP-concavity is the length of the shortest path to the
bridge without intersecting the polygon. Notch-cuttingiChazelle 1981] is a strategy that splits a polyhedron
with a cut plane can be used to resolve notches in Algorithm 1. The
details of this notch-cutting strategy are discussed in [Bajaj and Dey
1992]. Figures 6(a)(b) illustrate axtD using cut planes that bisect
dihedral angles.

However, the techniques used for polygons do not extend easily
to three-dimensions. In particular, there is no trivial one-to-one
bridge/pocket matching. In addition, while SL-concavity can still
be computed efficiently, the best known methods for computing
shortest paths on polyhedra require exponential time [Sharir and
Schorr 1986]. We will address these issues later in this paper.

3 Approximate Convex Decomposition

The goal of approximate convex decompositiag) is to gener-

ate decompositions whose components are approximately convex.
We estimate how convex a component is using the concavity of the
component. For a given modél, P is said to ber-approximate
convex if concavity(P) < 7, whereconcavity(p) denotes the
concavity measurement pfandr is a tunable parameter denoting
the non-concavity tolerance of the application. rAapproximate
convex decomposition aP, ACD(P), is defined as a decompo-
sition that contains only-approximateconvex components; i.e.,

©

Figure 6: Resolving concavity (a) using a cut plane that bisects a
dihedral angle results in (b) a decomposition with 10 components
with concavity< 0.1. In contrast, (c) carefully selected cut planes
generate only 4 components with concawvity).1.

A difficulty of this approach is selecting “good” cut planes. For
ACD,(P) ={P; | P, € D(P) and concavity(P;) < 7}. (2) example, in Figure 6(c), carefully selected cut planes can gener-

ate fewer components than cut planes that simply bisect the dihe-
dral angles of notches. Unfortunately, good strategies for finding

such good cut planes are not well known. Joe [1994] proposed an e pOCket
approach to postpone processing notches whose resolution would

produce small components, but this strategy still produces many /

small components with sharp edges for large models, especially for -

more complicated models that are commonly seen nowadays. projection of e

3.3 General Strategy: Feature Grouping

For both measuring and resolving concavities, we use a technique
we callfeature groupingo collect sets of similar and adjacent fea-
tures that can be processed together.

For measuring concavity, by allowing bridges to be formed from
convex hull patches instead of a single convex hull facet, we can
both dramatically reduce the number of bridges as well as decrease
the cost of computing the pocket to bridge matching. Figure 7 ‘

shows an example of the bridge/pocket relationship with and with- (bridges) (pockets) (concavity)

out grouping. As we will see in Section 4.1, bridge patches can be _ - _)
used to provide a conservative measure of concavity. Figure 8: Top: An identified bridge/pocket pair. Bottom:

Bridge/pocket pairs from the teeth model. The rightmost model

is shaded so that darker areas indicate higher concavity.

Our strategy to match bridges with pockets is to identify pockets
by projectingconvex hull edges to the polyhedron’s surface. The
“projection” of a convex hull edge is a path on the polyhedron’s
surfaced P connecting the end points ef we compute the paths

on 9P using Dijkstra’s algorithm. After the convex hull edges are
projected, the set of all (connected) polyhedral facets bounded by
the projected edges forms a pocket. See Figure 8. After matching

(bridges) (bridges) bridges with pockets, we measure the concavity: 6f pocketp

as the straight line distance to the tangent plang'®fssociated
bridge.

Extension 1: Feature grouping — a conservative estimatian
Finding pockets for all facets i@C Hp can be costly for large
models. It turns out we can reduce this cost and still provide a
conservative estimate of concavity by grouping clusters of ‘nearly’
coplanar and contiguous facets to fornbradge patch(or simply
abridge) on 9C Hp. We then designate‘aupporting” plane that

is tangent taA)C' Hp as a representative plane for all facets in the

bridge and compute the concavity of a vertex as the distance to the

(pockets) (pockets) supporting plane of its bridge; see Figure 9. The bridge patches can
without groupin with groupin ’ :
grouiping grouping be selected.so that the _distance from all faces in the bridge patch to
Figure 7: The bridges and the pockets with and without bridge the supporting plane will be guaranteed to be below some tunable
i i thresholde. For example, whea = 0.05, only 20 bridges are iden-
grouping (clustering). - ML : .
tified for the model in Figure 8 which has 4,626 facets on its convex
hull.

Resolution of concavity can also be improved by considering fea-
ture sets rather than individual features and by forcing the cut plane supporting plang

to be defined with respect to a feature set. Unlike the existing V \<\1< € brid
curvature-based methods [Hubeli and Gross 2001; DeCarlo et al. ~— bridge
2003; Ohtake et al. 2004; Rusinkiewicz 2004; Yoshizawa et al. _/—\J ~— pocket
2005], our feature grouping is based on concavity.

4 AcCD of Polyhedra without Handles Figure 9: A bridge patch and its supporting plane.

We first discuss our strategy for computingAzd of a genus zero One way to compute bridge patches is from an outer approximation
polyhedron. This strategy will be extended to handle polyhedra of a polyhedron. Here we udédoyd’s clustering algorithm adapted

with non-zero genus in the next section. from [Cohen-Steiner et al. 2004] to identify bridges and to ensure
that the maximum distance from the included facets to the support-
4.1 Measuring Concave Features ing plane is less thaa Our clustering process is composed of the

following two main steps:

Recall that we define the concavity of a vertexas the distance
from 9P to the convex hull boundary. Since there is no unambigu-
ous mapping from notches to convex hull facets in 3D as there was
in 2D, we first must define one. In the first step, we estimate the required bridge size for a given

1. estimating the numbérof the required bridges, and
2. grouping the convex hull facets inkoclusters.

thresholde by incrementally creating bridges and assigning convex
hull facets to the bridges until all the convex hull facets are assigned.
We say that a facet can be assigned to a bridge if the distance be-
tween them is less than Our estimation process is outlined in
Algorithm 2 in Appendix A.

0.02
0.04
0.06)

S 008

In the second step, after we know the upper bound of the number
of bridges required, we can approximate the convex hull boundary.
This can be solved usingloyd’s clustering algorithm introduced

in [Cohen-Steiner et al. 2004], which iteratively assigns all convex

hull facets to the best bridges using a priority queue.

01
So0.12

Concavity

0.14
0.16
0.18

.

0 01 02 03 04 05 06 07 08
d

It is important to note that, as stated in Observation 4.1, the esti-

mated concavity measurement computed this way is always greater_) o)

than or equal to the concavity measured as convex hull facets areFigure 11: The thin (blue) line in the plot is a pocket boundary of
projected individually. Therefore, the estimated concavity is an up- the Stanford Bunny (indicated by an arrow) in concavity domain.

per bound for the actual concavity.

Observation 4.1. The estimated concavity measurement is always
greater than, in an amount less thanor equal to the concavity
measured as convex hull facets are projected individually.

Extension 2: Polygonal surface
In most cases, the previously men-
tioned concavity measure can han-
dle surfaces witlopeningsaturally.

The case that requires more attention
is when a surface “exposes” its inter-
nal side to the surface of the convex
hull, e.g., the surface on the right.
The internal side of a surface is ex-|!

posed to the convex hull surfaie

and only ifat least one of the convex external
hull vertices isconcave A convex

hull vertexp is concave if its outward normals on the convex hull
and on the surface are pointing in opposite directions. The point
(resp.,q) in the figure above is concave (resp., convex).

internal

opening

cross section

Now, we can compute the pocket of a bridgéom the projection
of 5’'s boundaryog. Lete be an edge ofS. If e's vertices are

e both convexthen project as before,

e both concavethene has no projection,

e one convex and one concafeeg., the edg@q in the figure),
thene’s projection is the path connecting the convex end to
the opening.

4.2 Feature Grouping: Global Cuts

When resolving concave features, the concept of feature grouping

Its simplification is shown in a thicker (red) line and identified knots
are marked as dots.

pocket cutk as W(k) = w(k)/v(k), where w(k)
[%1/32,¢, concavity(v) is the reciprocal of thenean con-
cavityof x andy(k) is the accumulated curvature of the edges
in k. The curvature of an edgels measured using theest fit
polynomial[Hubeli and Gross 2001].

. Connecting pocket cuts into global cut®ur strategy is to
organize the knots and pocket cuts in a gréph whose ver-
tices are knots and edges are pocket cuts. The cycle with the
minimum weight inG x will be the global cut.

Essentially, this bottom-up approach identifies and groups the knots
on the projected bridge edges. It is natural to ask why knots are of
interest. As knots are the critical points of a projected bridge edge
T, We also consider a projected bridge edge as a critical represen-
tation of a polyhedral boundary. Note that the end points.oére

both vertices of the convex hull. Intuitively, the verticesmofare
samplesof 0P and therefore encode important geometric features
related to concavity over the traversal from goeakto another
peaki.e., 7. is an evidence that shows how the convex hull vertices
are connected ofiP.

Next, we will provide more implementation details and justify the
choices of the steps mentioned above. The reader may first skip the
details and proceed to Section 5 to focus on this work’s high level
strategy.

4.2.1 Step 1: Identifying Knots

allows us to better prioritize concave features for resolution and also We use the Douglas-Peucker (DP) line approximation algorithm to
results in a smaller and more meaningful decomposition. We first identify knots because DP can reveal critical points [White 1985]
describe our method for grouping features, and then show how theand resembles the conceptaafD. A critical point in DP of a poly-

groups are used to select cut planes to partition the model.

Our strategy of grouping concave features isamcavity-based
bottom-up approach in which critical points, calldchbts, on the
boundary of each pocket are connected into local feature sets, calle
“pocket cuts which are then grouped to form global feature sets,
called “global cuts. Our approach is illustrated in Figure 10 and
sketched below.

1. Identifying knotsKnots are critical points on a pocket bound-

ary dp identified as notches of the simplifi€th using the

Douglas-Peucker (DP) algorithm [Hershberger and Snoeyink

1992] with simplification threshold, 0 < ¢ < 7.

Computing pocket cut#\ pocket cut is a chain of consecutive

edges in a pocket whose removal will bisegt. Here, pocket

cuts are paths connecting pairs of knots, and we consider all

knot pairs forp.

3. Weighting cuts The weight of a cut determines the
quality of the cut. We compute the weight of each

line 7 is a farthest point from the line segment connecting the end
points ofr and, similarly, a knot iracD is a farthest point from the
bridge boundary. This provides an explanation of why we can use

(PP to extract important concave features.

Given a pocket boundary. (i), knots are critical points on. ()
found by the DP algorithm. To identify knots on.(z), we first
transformr, (i) in R? into a two dimensional line (i) in the con-
cavity spaceusing the following function:

*
Te

(i) = (di, concavity (e (7)), 0 < i < 1, ©))
whered; = i-|e| and|e] is the length ok. Thenx; (¢) is simplified
using the DP algorithm [Hershberger and Snoeyink 1992]. We call
a vertex a “knot” if it is anotchin ¢ (7) with concavity larger than
4,0 < 6§ < 7. The threshold controls the size of knots, i.e., a
smalleré implies more concave features will be identified; in this
paper, we experimentally sétetween; and 175 .

(b) computing pocket cuts

(c) extracting global cuts

(d) splitting the model

Figure 10: The process of grouping and resolving concave feat{eKnots (marked by spheres) from one of the pockets. (b) Kmnois f
all pockets and a pocket cut (shown in thick lines) connecting a pairatbkiic) Global cuts (thick lines) and the grapghg. (d) Solid (left)

and surface (right) decompositions using the identified global cuts.

An example ofr} (i) and identified knots are shown in Figure 11.
We note that these pocket boundaries have similar functionality as
the exoskeletorthat connects critical points anP coded withav-
erage geodesic distan¢hang et al. 2003].

4.2.2 Step 2: Computing Pocket Cuts

A pocket cut is a chain of consecutive edges in a popkehose
removal will bisectp. In fact, any path irp that connects any two
knots is a pocket cut. For a given pair of knots, we form a pocket
cut by computing a path using Dijkstra’s algorithm (w.r.t. a weight
function W defined in Step 3). Figure 12(a) and (b) shows a pocket
with its knots on the boundary and all of its pocket cuts, respec-
tively.

A pocket withn;, knots hasO(n}) pocket cuts. Not all of these
O(n}) pocket cuts irp are interesting to us. In fact, we only need
to considerO(ny) pocket cuts. This reduction is based on the fol-
lowing observation.

Observation 4.2. Let N,, be a set of knots on the boundary be-
tweenp and one of its neighboring pockeis Pocket cuts between
each pairN,, and N, in p form a non-crossing minimum (weight)
bipartite matching.

We say two pocket cuts, and«], cross each other i/, will be-
come disconnected aftpris separated by, ; see Figure 12(c). We
also restrict a knot to be connected to only one knot from a neigh-
boring pocket. The result of this restriction is that the pocket cuts
between two boundaries form a bipartite matching of their knots
and onlyO(ny) pocket cuts need to be considered when connect-
ing them into global cuts; Figure 12(d) shows a result using the
minimum weight bipartite matching (w.r.t. a weight functigv).

Cup-shape pocket Because knots are identified on the boundary
of a pocketp, we cannot find any pocket cut if the boundarypof

I

<7
N

(b) aII‘ pocket cuts

—

]

\

(a) identified knots

(c) non-crossing pocket cyt¥) bipartite matching pocket cuts

Figure 12: (a) Identified knots of a pocket shown in dark circles.
(b) All pocket cuts that connect all pairs of knots in the pocket. (c)
Non-crossing pocket cuts. (d) Pocket cuts from bipartite matchings
between pairs of boundaries.

edges inx. The curvature of an edgeis measured using thsest

is near its bridges, e.g., a cup shape pocket. Indeed, decomposing fjt polynomial[Hubeli and Gross 2001] of the intersection of the

a cup shaped model into meaningful components is known to be
difficult. In our case, this problem can be solved by simply subdi-
viding 8 andp into smaller bridges and pockets and forcing the new
pocket boundary to pass the maximum concavity,@s illustrated

in Figure 13.

4.2.3 Step 3: Weighting a Cut

The weight of a cut determines the quality of the cut. As mentioned
in Section 2, we believe that curvature, which has been extensively
used to identifysurfacefeatures, is not sufficient to identiftruc-

tural features. Thus, we define the weight of a cut as:

w(K)
W(k) = ——~ 4
) =205)
wherew(r) = |k |/concavity(x) is the reciprocal of thenean

concavityof a cutx and~(x) is the accumulated curvature of the

model and the plane bisectirg Since curvature is only measured
on cuts, instead of on the entire model, the computation is less ex-
pensive.

4.2.4 Step 4: Extracting Cycles from Graph G

Recall thatG'x is a graph whose vertices and edges are the knots
and the selected pocket cuts. An exampl&gf is shown in Fig-

ure 14. Each cycle i/ x represents a possible way of decompos-
ing the model. The process of extracting cycles fiGim used here

is similar to that of constructing a minimum spanning tree (MST)
Tk on Gk by greedily expanding the most promising branch into

all its neighboring pockets in each iteration. A cycle is identified
when two growing paths df'x meet. With this high level idea in

mind, we are going to discuss technical details next.

Let x, be a pocket cut to be resolved, e.g., the pocket cut that con-

subdivided bridge:

7l

Figure 13: Left: A cup-shape pocket and its bridge. The boundary
of the pocket are very close to the bridge. Right: The bridge is

subdivided and the new pocket boundary is forced to pass the mostt

concave feature.

tains the most concave vertex. To find cycles that inclaglewe
extractT’x rooted at<, from G'x. Tk is constructed so that a path
from the rootx, to a leaf will consist of concave features that can
be resolved together.

The process of building a tréé from Gk is similar to that of con-
structing a minimum spanning tree Gh<. An exception is that we
also dynamically create new pocket cuts after each MST iteration.

These new pocket cuts are simply the shortest (geodesic distance

paths connecting the current leavedaf to the pocket boundaries
without knots, e.g.x’ in Figure 14. Thus]x can explore low con-

Figure 15: Left: A cutk around the neck connecting poimtandb.

Mid: The best fit plané® of . In this caseF is slightly higher than

a and E’s intersection with the model does not mateh Lighter

and darker shades indicate different components after decomposi-
ion. Right: An improved cut plane by pushidgtowardsa.

the vertices on the portion ef that is misrepresented by the inter-
section, e.g., point in Figure 15.

4.4 Complexity Analysis

Theorem 4.3. Let {C;}, i« = 1,...,m, be ther-approximate
convex decomposition of a polyhedrénwith n. edges with zero

genus.P can be decomposed in{@; } in O(n? log n.) time.

Proof. First, we show thatacp of a polyhedronP requires

cavity or even convex areas without using knots. A MST thatis O(n,n, logn,) time for each iteration in Algorithm 1, where,
built directly on vertices and edges of a polyhedron has been Usedandne are the number of vertices and edgesinresp. The dom-

for feature extraction, e.g., [Pauly et al. 2003]. However, urilike
which is built on knots and pocket cuts, their MST requires pruning
to enhance long features.

Figure 14: Left: An example o7 x (partially shown). Thicker
pocket cuts have smaller weights. Right: An extracted tree from
Gk . The boldest line is the best global cut for the root.

4.3 Resolving Concave Features

For convex volume decomposition, we define the cut plane of a
global cutk as thebest fit planeof . For convex surface decom-
position, we simply split the surface at the edges of

A planeFE fits best if E minimizes

Z concavity(e) - pe(e), (5)

ecr

wherep g (e) is the area betweanand the projection of to £.

inant costs are the pocket cut computation, which extracts paths
between knots o8 P and can také (n. log n,,) time for each path
extracted time using Dijkstra’s algorithm. To resolveratiotches

in P, Algorithm 1 will takeO (rn,n. logn,) O(nﬁ logne). O

Note that even though the time complexity of the proposed method
is high, as seen in our experimental results, this is usually a very
conservative estimate because the number of iterations required is
usually small when the toleranees not zero and the total number

of pocket cuts is usually quite small.

5 AcD of Polyhedra with Arbitrary Genus

Because the convex hull of a polyhedréris topologically a ball,
multiple bridges may share one pocket for polyhedra with non-zero
genus. For example, neither of the bridgesr (5 in Figure 16(a)

can enclose any region by themselves. We address this problem by
reducing the genus to zero.

Genus reduction is a process of finding sets of edges (dadledle

cut9 whose removal will reduce the numbertadmological loops

on the surface of. The problem of finding minimum length han-
dle cuts is NP-hard [Erickson and Har-Peled 2002]. Several heuris-
tics for genus reduction have been proposed (see a survey in [Zhang
et al. 2003]). The identified handle cuts will then be used to prevent
the paths of the bridge projections from crossing them. Figure 16(b)
shows an example of a handle cut and the new bridge/pocket rela-
tion after genus reduction.

Although we can always use one of the existing heuristics, the
bridge/pocket relationship can readily be used for genus reduction.
Our approach is based on the intuition that the bridges that share
the same pocket tell us approximate locations of the handles and

can be approximated via a traditional principal component analysis the trajectory of how a hand “holds” a handle roughly traces out

using points sampled on

Note that, sometimes, the intersectionfofand the modeP does
not match the cuk. An example of this problem is shown in Fig-

how we can cut the handle. For example, imagine holding the han-
dle of the cup in Figure 16 with one hand: the hand must enter the
hole though one of the bridges, e.g,,and exit the hole from the
other bridge, e.g@. We call bridges that share a common pocket

ure 15. This happens when the intersection traverses different pock-a set of “handle caps” of the enclosed handles. A model may have

ets thatx does. It can be addressed by iteratively pustingward

several sets of handle caps.

() (b)

ACD, i.e., solid or surfacecbD, andAcD with or without feature
grouping.

Implementation Details. There are three parameters,e, andd,

used in our proposed method. The first parameter is the concavity
tolerancer, which is used to control how convex the final compo-
nents are and should be set according to the need of the application.

The second parameter is the bridge clustering thresheithich is
the upper bound of the difference between the estimated concavity
and the accurate concavity when the bridge clustering is not used.

Figure 16: (a) The pocket (shaded area) is enclosed in the projectedn our experiments, the value efdoes not significantly affect the

boundaries of two bridges anda. (b) Pockets of3 and« after
genus reduction.

Figure 17: Four handle cuts found in the David model.

This intuition can be implemented by applying the following oper-
ations to identified handle cuts.

1. Flooding the polyhedral surfacgP initiated from the pro-
jected boundaries of a set of handle caps. Vertices in a wave-
front will propagate to neighboring unoccupied vertices.

final decomposition and is always set tode 7.

The third parametef is used in the Douglas-Peucker (DP) algo-
rithm, which is used to identify knots on the pocket boundaries for
concave feature grouping. The valueja$ difficult to estimate and

is set experimentally betweey and 155 -

Models. The models used in the experiments in this section are
summarized in Table 1. In Table 1, for each model studied, we show
the complexity of the model in terms of the number of edges, the
ratio of notches with respect to the edges, and the physical file size
in a simple BYU (Brigham Young University) format. In these 13
models, the David and the dragon models are not closed, i.e., with
openings on their boundaries, and all the other models are closed.

6.1 Results

All experiments were performed on a Pentium 2.0 GHz CPU with
512 MB RAM. Our implementation oAcD of polyhedra is coded

in C++. A summary of results for 13 models is shown in Table 1,
which includes results from both solid and surface decomposition,
and in Figures 18 and 19, which contain results of several approxi-
mation levels ofacD with and without feature grouping.

Result 1: AcDs are orders of magnitude smaller thatps. In
Table 1, We show the size of the six decompositions, including solid
ACDy .2, SOlIdACDg. g2, SOlIdECD, surfaceacDy o, surfaceacbg. oo,

and surfaceecD, in terms of the number of final components and
the physical file size in BYU format.

As seen in Table 1, the soliscbs are orders of magnitude smaller

. Loops can be extracted by tracing in the backward direction than solidecb. The solidACDso.> and solidacDso o2 have 0.001%
of the propagation. For each pair of handle caps, we keep and 0.1% of the number of components that the sedids have on
a shortest loop that connects their projected boundaries, if it average, resp. The physical file size of solidbs;.» and solid
exists. ACDs.02 are 0.08% and 0.16% of the size of the satidps on

. Let G, be a graph whose vertices are the handle caps andaverage, resp. Note that tigeD process of the Armadillo model

whose edges are the discovered handle cuts. Cyclés,in
indicate that the removal of all discovered handle cuts will
separaté’ into multiple components. We can prevénfrom
being split by throwing away handle cuts so that no cycles are
formed inG},.

. Check if the handle caps still share one pocket. If so, repeat

the process described above until the remaining handle cuts

are found.

terminated early because it required more disk space than the avail-
able 20 GB. The results fa&cb shown in Figure 18 are collected
before termination, i.e., they are for an unfinistexb, so all com-
ponents are not yet convex. Figure 18 also shows that thesotid

can be computed 72 times faster than the seti. These times

are representative of the savings offered by sati® overecbo.

Although the file size of the surfacecbs is not significantly
smaller than for the surfacecp, the surfaceancbsy o and surface

Figure 17 shows a result of our approach. Note that we may not al- ACDSo.o2 have 0.02% and 0.2% of the number of components that
ways reduce the genus of a model to zero because some handles aff€ ECD has on average. Figure 19 shows thabs only require

too small or can map to just one bridge, e.g., a handle completely
inside a bowl. These “hidden” handles will eventually be unearthed

a small constant factor increase in the computation time over the
linear time surfac&co; this is representative of the relative cost of

as the decomposition process iterates if the concavity measuremengurfaceacb andecp. The table below summarizes these statistics.

of the handle is untolerable. For many applications, this behavior
of ignoring insignificant handles can even represent the structure of
the input model better [Wood et al. 2004].

6 Experimental Results

In this section, we compare exa®@dp) and approximateACD)
convex decomposition. In addition, we consider four variants of

% solidecD % solidecb % surfaceecD % surfaceecb

‘ #components file size #components file size

ACDg .2 0.002% 0.08% 0.026 88.3%
ACDg.02 0.1% 0.16% 0.2% 89.6%

Result 2: Solid AcDs are only slightly larger than surfacecps.

Table 1: Decompositions of 13 common models, whe{® is the percentage of edges that are notclass the number of edges, arftl

and|P;| are the physical (file) size and the number of components of the dexsitiop, resp. All models are normalized so that the radius
of their minimum enclosing spheres is one unit. Feature grouping is used fs.

= o \ ; Z) \ b
@Y X SN W
Models | dinopet elephant bull inner ear horse scrav-dr bunny teeth female venus armadillo david
Full Solid Surface
model ACDg.2 ACDg.02 ECD ACDg.2 ACDg.02 ECD
models | |r[% le] S || 1P| S | || S | Pi| S || 1P S | |Pi] S [P S
dinopet | 34.9% 9,895 201 KB 13 252 KB 67 577 KB 5,607 38 MB 12 205 KB 62 226 KB 1,297 224 KB
elephant | 30.4% 10,197 206 KB 13 338 KB 136 1.4 MB 5,349 50 MB 15 215 KB 123 250 KB 1,306 229 KB
bull 42.5% 18,594 379 KB 12 481 KB 211 2.3 MB 12,210 | 102 MB 12 388 KB 191 446 KB 3,486 444 KB
innerear | 34.0% 48,354 1.0 MB 31 1.4 MB 181 3.6 MB 14,591 | 171 MB 26 1.0 MB 89 1.1 MB 6,360 1.2 MB
horse | 34.4% 59,541 1.3 MB 8 1.4 MB 77 2.4 MB 24,044 | 527 MB 8 1.3 MB 47 1.3 MB 8,095 1.4 MB
screw-dr | 45.5% 81,450 1.8 MB 1 1.8 MB 44 3.0 MB 43,180 2.0GB 1 1.8 MB 9 1.8 MB 15,052 2.1 MB
bunny | 40.5% 104,496 2.3 MB 6 2.5 MB 178 6.6 MB 46,728 2.8GB 6 2.3 MB 97 2.4 MB 16,549 2.7 MB
teeth | 45.5% 349,806 7.9 MB 11 9.4 MB 307 18.8 MB 135,224 7.5GB 29 8.0 MB 131 8.2 MB 67,059 9.4 MB
female | 38.8% 365,163 8.5 MB 5 8.7 MB 67 10.9 MB 145,085 7.2GB 5 8.5 MB 50 8.6 MB 51,580 9.3 MB
venus | 43.8% 403,026 9.3 MB 3 9.5 MB 273 | 32.8MB 166,555 | 18.2 GB 3 9.3 MB 164 9.6 MB 72,190 9.6 MB
armadillo | 41.4% 518,916 | 12.1 MB 11 12.1 MB 98 14.2 MB 726,240 | 20+ GB 11 12.2 MB 85 12.4 MB 89,839 | 14.1 MB
david 38.7% 748,893 | 18.0 MB models are 10 18.0 MB 170 18.3 MB 85,132 | 20.1 MB
dragon | 42.8% | 1,307,170 | 31.7 MB not closed 12 31.8 MB 237 | 32.1MB 246,053 | 37.3 MB
Table 1 also shows that the size of the salitbs are about 1.6 ey (e o ok o2

times larger than the surfagecbs due to the fact that the solid
ACDS use cut planes to approximate (possibly non-planar) concave

features.

Result 3: AcDs with feature grouping are smaller tha@bs with-
out feature grouping. This experiment studies the effect of fea-
ture grouping on thecbs of the Armadillo and the David models.
We further investigatecps with different approximate levels. Fig-

x1.4

xT7.1
S

ures 18 and 19 show results of solid and surface decomposition for
a range of approximation value respectively. Figures 18 and 19
show that feature grouping successfully reduces the size of both
solid and surface decompositions. In particular, we see a slowly
increasing size foacDs with feature grouping as the value of
decreases (i.e., as the convex approximation approaches an exac
convex decomposition). In addition, with feature groupiagp
produces structurally more meaningful components.

7=0.04 7=0.02

7=0.02 A
ACD with feature groupi

‘eature grouping

exact = =004 X
[Chazelle et al. 1995] ACD without ft ng
Figure 19: Convex surface decomposition. The leftmost figure
shows a result of the exact decomposition using the “flood-and-
retract” heuristic. The others are results of the approximate decom-
position.

ACD,02
L4 size=388
d time=290.1

Q& no feature groupind \

ACDo.02
size=98
time=364.9 Ay

feature grouping

726,240 componetsj 4 ;
13,068.6 seconds

¥ 7 Applications of ACD
[Chazelle 1981] #

T 602 004 0.08 02 The convex hulls of thecb components (and sometimes the com-

400 — —
3 — ponents themselves) can be used by methods that usually operate
221 on convex polyhedra, making them more efficient. This includes
T o : : : a large set of problems in computational geometry and graphics.
£ 400 ; ‘ Here, we demonstrate four applications including point location,
€ 200f ¥ i shape representation, motion planning, and mesh generation.
3 —
2 T om 0.04 0.08 oz Point location (solid AcD without feature grouping). Point loca-

tion, which checks if a point is in a polyhedronP, is a funda-
mental problem that can be found in ray tracing, simulation, and
sampling. Paint location can be solved more efficiently for convex
polyhedra by checking if is on the same side of alP’s facets.
Locating points for a non-convex model can benefit freoD us-

Figure 18: Convex solid decomposition. The size and timeaxf
with and without feature grouping are shown for a range approxi-
mation values-.

ing the convex hulls of itacD components if some errors can be
tolerated, e.g., the particles in Figure 5. These errors are due to the
difference between the component convex hulls ofatbhe compo-
nents and the original model.

In our experiments, point location d0® random points is per-
formed for the solicecp and for the convex hulls of thecDg.o2
components; point location in thecd did not exploit the hierar-
chical structure of thecb, but simply tested each component sep-
arately.

As seen in Figure 20, even using this naive strategy, point location Figure 21: Skeletons extracted from theb components of two
in the AcD is about 23% faster than in the original teeth model. As Models and their deformationd is the graph edit distance from

seen with the elephant model, the advantage ofattie over the the skeleton of the deformed model to that of the original model.
ECDis even more pronounced. In both experiments, fewer than 1% D2 is D without considering degree 2 vertices whose insertion and
errors were introduced usigD. deletion do not change the topology of the graph.

ECD: 5,349 parts ACDg.02: 204 parts
57 hrs 52.2 mins

==

components can be used to generate tetrahedral meshes from the
convex hulls of thescD components using Delaunay triangulation.
The convex hulls may further simplified, e.g., using triboxes [Cros-
nier and Rossignac 1999], to generate even coarser meshes. These
meshes can later be used for, e.g., surface deformation. An illustra-
tion of this application is shown in Figure 4.

—

8 Discussion and Future Work

Figure 20: Point location of0® points in the solidecp and the
convex hulls of thexcDy o2 of the elephant model (6,798 triangles).
Measured time includes time for decomposition and point location.
Point location inACDy o2 has 0.99% errors. External points of 1000
samples inecD are shown in the figure on the left and only the
misclassified (as internal) points ATDs are shown on the right.

We have presented a framework for decomposing a given polyhe-
dron of arbitrary genus intaearly convexcomponents. This pro-
vides a mechanism by which significant features are removed and
insignificant features can be allowed to remain in the final approxi-
mate convex decompositioag¢n).

Despite our promising results, our current implementation has some
Shape approximation (surfaceAcb with feature grouping). The limitations which we plan to address in future work, some of which
components of aacD can also be used for approximating shapes can be solved without too much difficulty. For example, some un-
using the convex hulls of thecb components. Figure 2 shows a common types of open surfaces with non-zero genus, whose ver-
simplified representation of the dragon model. tices on the convex hull are all convex, cannot be handled correctly
o by the proposed method. Also, splitting non-linearly separable fea-
Although there are no well accepted criteria to compare decompo- tyres using a best fit cut plane can still generate a visually unpleas-

sitions, we can compare the skeletons extracted from the decom-ant decomposition. One possible way to address this problem is to
positions (see [Lien et al. 2006] for details), e.g., using graph edit ysecurvedcut surfaces.

distance [Bunke and Kandel 2000], which computes the cost of op-

erations (i.e., inserting/removing vertices or edges) needed to con-There are other issues that require further research. For example,
vert one graph (skeleton) to another. Using this metric, Figure 21 our feature grouping method has difficulty in collecting long fea-
shows thanc still produces matching representations after defor- tures that have relatively low concavity. One possible approach

mations. to address this issue is to adaptively select the knot identification
. .) . threshold$ for each pocket. Another issue is the accuracy of the
Motion planning (surfaceAacD with feature grouping). Thecp concavity measure. One possible efficient alternative to computing

components can help to plan motion, e.g., for navigating in the hu- ghortest paths, which as previously mentioned is NP-hard, is to use
man colon or removing a mechanical part from an airplane engine. o agaptively sampled distance field [Frisken et al. 2000].
Sampling-based motion planners have been shown to solve difficult

motion planning problems; see a survey in [Barraquand et al. 1997]. Ref

These methods approximate the reachable configuration space (C- ererences
Spaqe) of.a movable object by sampling and connecting randomasay, C., Anp DEY, T. K. 1992. Convex decomposition of polyhedra
configurations to form a graph (or a tree). However, they also have and robustnessSIAM J. Comput. 21339-364.

several technical issues limiting their success on some importantB/_\RFWQU/_\,\ID I KAVRAKI. L. E. LATOMBE. J.-C. L. T.-Y.. MoT-

types of problems, such as the difficulty of finding paths that are " wanr, R., AND RAGHAVAN, P. 1997. A random sampling scheme for
required to pass through narrow passages. path planninglint. J. of Rob. Res 1®, 759-774.

ACD can address the so called “narrow passage” problem for someBUNKE, H., AND KANDEL, A. 2000. Mean and maximum common sub-
problems by sampling with a bias toward cuts betweenatp graph of two graphsPattern Recogn. Lett. 22, 163-168.
components of a workspace (for rigid or articulated robots). Fig- CHAZELLE, B., AND PALIOS, L. 1994. Decomposition algorithms in
ure 3 illustrates the advantage of this sampling strategy over uni- ~ eometry, '?Algeﬁreg% %ig”ﬂ;y and its Application€. Bajaj, Ed.
form sampling [Kavraki et al. 1996]. Advantages of theD-based pringer-veriag, ch. 7, 41544/

sampling are that more samples are placed in the narrower (diffi- CHAZELLE, B., DOBKIN, D. P., SIOURABOURA, N., AND TAL, A. 1995.
cult) regions and also the connections between the samples can be Is”gteg'islfﬁr Eolyh%jé%llssurface deccompos't(';(’”&é; es’gﬂé’em‘a' study.
made more easily due to the nearly convex components. n Proc. 11th Annu. ympos. Comput. Ge@a7-305.

)) _ . CHAZELLE, B. 1981. Convex decompositions of polyhedraPhoc. 13th
Mesh generation (solid Acb with feature grouping). ThecbD Annu. ACM Sympos. Theory Comp@D-79.

CHoI, J., SLLEN, J.,AND YAP, C. K. 1997. Approximate Euclidean
shortest paths ifi-space.Internat. J. Comput. Geom. Appl, Z (Aug.),
271-295.

COHEN-STEINER, D., ALLIEZ, P.,AND DESBRUN, M. 2004. Variational
shape approximatiorACM Trans. Graph. 233, 905-914.

CROSNIER A., AND ROSSIGNAG J. 1999. Tribox-based simplification of
three-dimensional object€omputers&Graphics 23, 429-438.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S.,AND SANTELLA,
A. 2003. Suggestive contours for conveying shap@&M Trans. Graph.
22, 3, 848-855.

DEey, T. K., GIESEN, J.,AND GOSwAMI, S. 2003. Shape segmentation
and matching with flow discretization. Proc. Workshop on Algorithms
and Data Structures25-36.

ERICKSON, J.,AND HAR-PELED, S. 2002. Optimally cutting a surface
into a disk. InProceedings of the eighteenth annual symposium on Com-
putational geometryACM Press, 244-253.

FRISKEN, S. F., EERRY, R. N., Rockwoob, A. P., AND JONES, T. R.
2000. Adaptively sampled distance fields: a general reptasen of
shape for computer graphics. Broc. ACM SIGGRAPH249-254.

FUNKHOUSER, T., KAZHDAN, M., SHILANE, P., MIN, P., KIEFER, W.,
TAL, A., RUSINKIEWICZ, S.,AND DOBKIN, D. 2004. Modeling by
example. ACM Trans. Graph. 233, 652—663.

GoswaMI, S., Dey, T. K., AND BAJAJ, C. L. 2006. Identifying flat and
tubular regions of a shape by unstable manifoldsSBM '06: Proceed-
ings of the 2006 ACM symposium on Solid and physical mode\Giy
Press, New York, NY, USA, 27-37.

HERSHBERGER J.,AND SNOEYINK, J. 1992. Speeding up the Douglas-
Peucker line simplification algorithm. [Rroc. 5th Internat. Sympos.
Spatial Data Handling134—-143.

HUBELI, A., AND GROSS M. 2001. Multiresolution feature extraction for
unstructured meshes. Rroceedings of the conference on Visualization
'01, 287-294.

JOE, B. 1994. Tetrahedral mesh generation in polyhedral rediassd on
convex polyhedron decompositioristernational Journal for Numerical
Methods in Engineering 3693-713.

KATZ, S.,AND TAL, A. 2003. Hierarchical mesh decomposition using
fuzzy clustering and cut?ACM Trans. Graph. 223, 954-961.

KAVRAKI, L. E., SYESTKA, P., LATOMBE, J. C., AND OVERMARS,
M. H. 1996. Probabilistic roadmaps for path planning in high-
dimensional configuration spacetEEE Trans. Robot. Automat. 12
(August), 566-580.

KEIL, J. M. 2000. Polygon decomposition. randbook of Computational
Geometry J.-R. Sack and J. Urrutia, Eds. Elsevier Science PubBsher
B.V. North-Holland, Amsterdam, 491-518.

KENT, J. R., ®RLSON, W. E.,AND PARENT, R. E. 1992. Shape trans-
formation for polyhedral objectsSIGGRAPH Comput. Graph. 2@,
47-54.

KHODAKOVSKY, A., LITKE, N., AND SCHRODER, P. 2003. Globally
smooth parameterizations with low distortioACM Trans. Graph. 22
3, 350-357.

LAl, Y.-K., ZHOU, Q.-Y., Hu, S.-M.,AND MARTIN, R. R. 2006. Feature
sensitive mesh segmentation.3RM '06: Proceedings of the 2006 ACM
symposium on Solid and physical modeliAGM Press, New York, NY,
USA, 17-25.

LEE, Y., LEE, S., $HAMIR, A., COHEN-OR, D., AND SEIDEL, H.-P.
2005. Mesh scissoring with minima rule and part salienGamput.
Aided Geom. Des. 238, 444—-465.

LEVY, B., PETITIEAN, S., Ray, N., AND MAILLOT, J. 2002. Least
squares conformal maps for automatic texture atlas generdtidpro-
ceedings of the 29th annual conference on Computer graphidsnter-
active techniques362-371.

Li, X., TooN, T. W., AND HUANG, Z. 2001. Decomposing polygon
meshes for interactive applications. Pmoceedings of the 2001 sympo-
sium on Interactive 3D graphic85—-42.

LIEN, J.-M.,AND AMATO, N. M. 2004. Approximate convex decompo-
sition of polygons. IrProc. 20th Annual ACM Symp. Computat. Geom.
(SoCG) 17-26.

LIEN, J.-M., KEYSER, J.,AND AMATO, N. M. 2006. Simultaneous shape
decomposition and skeletonization. 8PM ’'06: Proceedings of the
2006 ACM symposium on Solid and physical modeW@M Press, New
York, NY, USA, 219-228.

Liu, S., MARTIN, R. R., LANGBEIN, F. C.,AND ROSIN, P. L. 2006.
Segmenting reliefs on triangle meshes.SIBM '06: Proceedings of the
2006 ACM symposium on Solid and physical modeW@M Press, New
York, NY, USA, 7-16.

MANGAN, A. P., AND WHITAKER, R. T. 1999. Partitioning 3d surface
meshes using watershed segmentatiBE Transactions on Visualiza-
tion and Computer Graphics, 8, 308-321.

OHTAKE, Y., BELYAEV, A., AND SEIDEL, H.-P. 2004. Ridge-valley lines
on meshes via implicit surface fittingACM Trans. Graph. 233, 609—
612.

PauLy, M., KEISER R.,AND GROSS M. 2003. Multi-scale feature ex-
traction on point-sampled surfaces. Pnoceedings of the Eurograph-
ics/ACM SIGGRAPH symposium on Geometry proces@8i-289.

PRAUN, E.,AND HOPPE H. 2003. Spherical parametrization and remesh-
ing. ACM Trans. Graph. 223, 340-349.

Rowm, H., AND MEDIONI, G. 1994. Part decomposition and description
of 3d shapes. I®roc. International Conference of Pattern Recognition
629-632.

RUSINKIEWICZ, S. 2004. Estimating curvatures and their derivatives on
triangle meshes. I&ymposium on 3D Data Processing, Visualization,
and Transmission

SHAPIRO, A., AND TAL, A. 1998. Polyhedron realization for shape trans-
formation. The Visual Computer 148/9, 429-444.

SHARIR, M., AND SCHORR, A. 1986. On shortest paths in polyhedral
spacesSIAM J. Comput. 15193-215.

SKLANSKY, J. 1972. Measuring concavity on rectangular mos#tEE
Trans. Comput. C-211355-1364.

WHITE, E. R. 1985. Assessment of line-generalization algorithnirsgus
characteristic pointsThe American Cartographer 12, 17-27.

Woop, Z., HopPE H., DESBRUN, M., AND SCHRODER, P. 2004. Re-
moving excess topology from isosurfaceBCM Trans. Graph. 232,
190-208.

Wu, K., AND LEVINE, M. D. 1994. Recovering parametric geons from
multiview range data. IrProc. International Conference of Pattern
Recognition 159-166.

Wu, K., AND LEVINE, M. D. 1997. 3d part segmentation using simulated
electrical charge distributionslEEE Transactions on Pattern Analysis
and Machine Intelligence 191, 1223-1235.

YAMAUCHI, H., LEE, S., LEE, Y., OHTAKE, Y., BELYAEV, A., AND SEI-
DEL, H.-P. 2005. Feature sensitive mesh segmentation with mefin shi
In SMI°’05: Proceedings of the International Conference on od-
eling and Applications 2005 (SMI' O5)EEE Computer Society, Wash-
ington, DC, USA, 238—245.

YOSHIZAWA, S., BELYAEV, A., AND SEIDEL, H.-P. 2005. Fast and robust
detection of crest lines on meshes. 3#®M '05: Proceedings of the
2005 ACM symposium on Solid and physical modeW@M Press, New
York, NY, USA, 227-232.

ZHANG, E., MiscHAIKOW, K., AND TURK, G. 2003. Feature-based sur-
face parameterization and texture mapping. Git-gvu-03-2®r@a In-
stitute Technology.

ZUNIC, J.,AND ROSIN, P. L. 2002. A convexity measurement for poly-
gons. InBritish Machine Vision Conferenc&73-182.

A Bridge Size Estimation

Algorithm 2 estimates the number of the required bridges so that
the error of the approximated concavity is less tharNote that
C(B) in Algorithm 2 is a set of contiguous facets adjacenjto
The distance from the facets () to the plane tangent t6 is at
moste.

Algorithm 2 bridgesizeestimationC'H p, €)

Input. A convex hullC'Hp and a threshold
Output. The number of bridges that can cov&t' H p
. Let B andK be two empty sets
repeat
Let 3 be a facet oBC Hp that is not inK
B=BUp
K = KUC(C(pB) »C(p) are facets that can be assigned to

arwbe

&)
until K = OCHp
return the size oB

N

