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Abstract

Folding planar sheets to make 3D shapes from is an ancient practice with many new applications, ranging from personal fabrication
of customized items to design of surgical instruments for minimally invasive surgery in self-folding machines. Given a polyhedral
mesh, unfolding is an operation of cutting and flattening the mesh. The flattened polyhedral nets are then cut out of planar materials
and folded back to 3D. Unfolding a polyhedral mesh into planar nets usually require segmentation. Either used as a preprocessing
step to simplify the mesh and provide semantics or as the result of unfolding to avoid overlapping, the segmentation and the unfold-
ing operations are decoupled. Consequently, segmented components may not be unfoldable and unfolded nets usually provide no
semantic meaning and make folding difficult. In this paper, we propose a strategy that tightly couples unfolding and segmentation.
We show that the proposed method produces unfoldable segmentation that resembles carefully designed paper craft. The key idea
that enables this capability is an algorithm that learns from failed unfoldings.
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1. Introduction

Making 3D shape from planar sheets is an ancient practice
with many new applications, ranging from personal fabrication
of customized items [1], which is fueled by the recent maker
movement, to design of specialized instruments in self-folding
machines [2] mostly due to the advances in active materials.
One of the prevailing methods for creating 3D objects from pla-
nar materials is “unfolding and folding” [3].

Unfolding involves cutting a given polyhedral mesh into surface
patches and then flattening them. To ensure that a surface patch
can be flattened, existing methods [4, 5] either approximate the
patch by developable surfaces or ensure that the patch forms
a net, i.e., a patch that can be cut and flattened by rotating its
facets along one of the incident edges without overlapping with
other facets [6]. The flattened patches are then cut out of planar
materials and folded back to 3D.

Either cutting a polyhedral mesh into nets or approximating
with developable surfaces, segmentation of the mesh (a pro-
cess of breaking a mesh into multiple components) is usually
involved; either before the unfolding algorithm is applied or as
a product of the unfolding algorithms. Segmentation before un-
folding is used as a preprocessing step to provide simplicity, as
well as semantics [7, 5]. As shown in Fig. 1, segmentation is
also a common technique used by paper craft designers. In the
literature, shape segmentation is usually done without consider-
ing foldability [8, 9]. Consequently, surface patches produced
by shape segmentation may still be cut into multiple nets or
approximated by multiple developable surfaces which lose the
semantic meaning and make folding and assembly less intuitive
thus time-consuming.

Segmentation can also be produced in order to avoid overlap-
ping in the nets [10]. However, these nets often provide little
shape information. Examples of these nets produced by the ex-
isting methods can be found in Figs. 9, and 10. In both scenar-
ios, segmentation and unfolding operations has been decoupled.

Figure 1: A commercial paper craft designed by KitRex [11] that shows seg-
mented parts with anatomic meanings.

In this paper, we propose a strategy that produces polyhedral
nets by tightly coupling the edge unfolding and surface seg-
mentation operations. Our objective is to algorithmically pro-
duce nets that resemble carefully designed paper craft such as
those shown in Fig. 1. Fig. 2 shows an example output of the
proposed method. We show that the proposed method naturally
provides semantic segmentation of the input mesh by unfolding
the entire mesh multiple times. Even though most likely, all
of these unfoldings will contain overlaps, the proposed method
learns from these failures and identifies parts that may be un-
folded into valid nets.

Existing shape segmentation methods rely heavily on shape fea-
tures, such as curvature and geodesic distance. On the contrary,
the proposed method creates the segmentation directly from in-
formation obtained from edge unfolding, therefore, ensures that
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Figure 2: Top row: The “Dancing Children” statue (3000 triangles) is seg-
mented into 16 parts by the proposed method. Most of these parts corresponds
to the heads, torso, legs of the model. The unfolded nets are shown in the
middle. Second row: Nets and the folded parts. Third row: A crafted paper
model, which is about 30 cm wide, 11 cm deep and 22 cm tall. Bottom row:
an optimization method proposed by Takahashi et al. [12] segments the same
model into 21 nets that do not provide semantic information.

every component in the segmentation can be unfolded into a
single net and maintain its semantics. An overview of the pro-
posed method can be found in Fig. 6 and we will discuss the
details in Section 4. Our experimental results demonstrate that
our method provides advantages of both foldability and seman-
tics, thus enables users to fold more complex models in shorter
time. As shown in Section 5, we are able to fabricate models
that are topologically more complex and contain much more
facets than those reported in the literature.

2. Background

2.1. Polyhedra Unfolding

Mathematicians spend centuries in answering a question: given
a polyhedron, is it always possible to unfold the polyhedron
by cutting on the surface of it, such that the unfolding of the

polyhedron does not contain overlapping? When cuts are re-
stricted only to the edges of polyhedra, it becomes an edge-
unfolding problem. For edge-unfolding, counterexamples were
found for non-convex polyhedra; for convex polyhedra, though
promising, it still remains open [13]. Later, heuristic methods
were proposed in the literature for unfolding convex polyhedra
to nets [6]. However, it becomes much harder to generate a
single net for non-convex shapes. Both Straub and Prautzsch
[10], Takahashi et al. [12] generate more than one connected
components for complex non-convex shapes to avoid overlap-
ping. The former one splits the unfolding when overlaps were
detected while the later one first splits the mesh into multiple
pieces then tries to merge them into one piece. All aforemen-
tioned works generate nets as final results, however, whether
there exists a continuous folding motion that transforms the net
back to its original shape is not considered in their works.

2.2. Paper Crafting via Shape Segmentation

Unfolding a non-convex polyhedron into a single connected
component is hard but not necessary for certain applications,
such as paper crafting: making 3D models from flat sheets of
paper. For paper crafting, shape segmentation techniques were
employed to simultaneously decompose and approximate the
mesh into smaller pieces [4, 7, 5] such that the unfolding prob-
lem becomes solvable and the approximated 3D model can be
obtained by assembling the folded shapes together. These ap-
proaches decompose the mesh into a few patches and approxi-
mate each patch with a strip, a generalized cylinder or a devel-
opable surface. Common drawbacks of these methods are that
they could generate an arbitrary number of pieces and the cuts
can be at arbitrary locations on the mesh which make assem-
bling much harder and less fun, also the approximation ability
is limited. Another category of shape decomposition method
worth noting is called Nearly Convex Decomposition (NCD)
[14, 15, 16], which segments a mesh into a controllable number
(usually small) of part-aware components that are nearly con-
vex. Mesh convexification shows great advantages in unfolding
and continuous folding, and we can obtain either exactly the
same model as the original one by assembling folded nearly
convex patches, or an approximated model (with bounded er-
ror) by folding the nets generated from the convex hulls of those
patches.

3. Preliminaries

3.1. Net of Polyhedra

An unfolding of a 3D polyhedron by cutting the surface of the
polyhedron is called the net of the polyhedron if the flattened
faces do not overlap in 2D. In this paper, we are interested in
edge unfolding in which cuts are only allowed along the edges
of the surface. An edge unfolding can be obtained by finding a
spanning tree of the dual graph of the mesh (see proof in [6]).
For a polyhedron with |F| faces, there will be |F| − 1 edges in
the spanning tree, called fold edges. All the rest of edges are
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cut edges, such as the red edges in the heart shaped meshes in
Fig. 4. Cut edges must first be cut in order to unfold the poly-
hedron and then later glued back to form the 3D shape. Heuris-
tic methods have been developed to assign weight to each dual
edge accordingly such that the minimum spanning tree of the
dual graph has a high probability of becoming a net. Fig. 4
shows nets obtained by two heuristic methods and their corre-
sponding spanning trees of the mesh’s dual graph.

3.2. Heuristic Methods for Finding Nets

Schlickenrieder [6] comprehensively studied different heuris-
tics for unfolding convex polyhedra to nets. Here we briefly in-
troduce two most powerful heuristic methods that will be used
in this paper for generating unfoldings.

Steepest Edge Unfolding The idea of this heuristic is to find
steepest cut paths from v− to v+ w.r.t a given unit vector ~c ∈ R3,
where v− and v+ are bottom vertex and top vertex w.r.t to ~c. For
each vertex (except v+), find the steepest edge ~e w.r.t to ~c and
add e to the cut set S. For all edges in S, assign weight 1 to their
corresponding dual edges, and assign weight 0 to rest of the
dual edges. Unfoldings generated by this heuristic usually has
a flower like shape. See Fig. 3 and the top example in Fig. 4.

Figure 3: Steepest edge unfolding. ~c = −−−→v−v+

Due to its 100% success rate in unfolding convex polyhedra
used in [6], Schlickenrieder [6] conjectured that Steepest edge
unfolding is able to unfold all convex polyhedra. Though care-
fully constructed counterexamples were discovered [17], it re-
mains a practical unfolder for convex meshes.

Flat Tree Unfolding Similar to Steepest Edge Unfolding, this
heuristic assigns edge weight according to its steepness w.r.t a
given unit vector ~c ∈ R3, weight(~e) =

〈~e,~c〉
‖~e‖‖~c‖ , where 〈., .〉 indi-

cates a dot production operation.

Though these two heuristics share the same idea, but the re-
sults yield by them are quite different as shown in Fig. 4. In
our experiments, we found that Steepest Edge works perfectly
on convex shapes but poorly on non-convex ones. Flat Tree
has a lower success rate in finding nets for convex shapes, but
it performs much better on non-convex ones than the steepest
edge method. Note that, these heuristic methods are designed
for convex polyhedra, though it might still work on some non-
convex polyhedra, it can easily fail on very simple non-convex
polyhedra like the star shape shown in Fig. 5.

Figure 4: Two nets of a heart model (198 triangles) produced by the steepest
edge heuristic (upper right) and flat tree heuristic (bottom right). These nets are
produced by the minimum spanning trees (shown in green) of the edges weights
assigned by the heuristics. Cut edges are shown in red.

Figure 5: Unfoldings generated by heuristic algorithms for a non-convex poly-
hedron with overlaps. From left to right: star shape model; Steepest Edge
Unfolding; Flat Tree Unfolding. Overlapped faces are shown in red.

4. Simultaneous Unfolding and Segmenting

Segmentation and unfolding are both edge-cutting operations
that determine the foldability of a mesh, thus should not be de-
coupled. In this section, we will discuss a method that first esti-
mates the likelihood of every pair of faces that can be unfolded
together without overlapping, and then segments the mesh into
face clusters that have high probabilities of becoming valid nets.
Upon the failure of unfolding a cluster in the segmentation, the
cluster is further segmented using the learned likelihood until
all clusters are unfolded. Fig. 6 provides an overview of the
proposed method.

4.1. Learn from Failed Unfoldings

To determine the likelihood of every pair of faces that can be un-
folded together without overlapping, the proposed method un-
folds the mesh multiple times using existing heuristics, such as
steepest edge for example. After the mesh is unfolded m times
using these unfolding heuristics, the proposed method analyzes
whether two faces f1 and f2 belong to the same connected com-
ponent without overlapping in all of these unfoldings. If f1 and
f2 belong to the same non-overlapping connected component n
times among m trials, then their foldability likelihood is sim-
ply n/m. Thus, the result of this learning step is a symmetric
similarity matrix, called “foldability matrix”, in which a large
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Figure 6: Overview of the proposed method. Overlapped faces are shown in red in the ‘Overlapping analysis’ box. Foldability matrix after clustering is shown
below the ‘Clustering’ arrow, in which rows are sorted by cluster id. Pixel p(i, j) indicates the probability that face fi does not overlap with face f j in the unfoldings,
the darker the higher. Each block along the diagonal represents one cluster. If any of segment was failed to unfold to net or failed to fold back, we can further
segment it using the proposed method. This process is repeated until all segments have nets and can be continuously folded back to 3D.

value means that two faces are likely to be unfolded without
overlapping. We next describe each of these steps in detail.

4.1.1. Unfold the Mesh Multiple Times

As discussed earlier, an unfolding of a mesh is closely related to
the minimum spanning tree of the dual graph of the mesh. That
is, a set of edge weights determines a specific unfolding. There-
fore, m unfoldings can be obtained by m sets of edge weights.
If the random unfolding heuristic is used, then m unfoldings
can simply be created by drawing m||E|| arbitrary numbers. If
steepest edge or flat tree heuristics are used, then we draw m
random unit vectors and use these vectors to determine the edge
weights. Alternatively, instead of drawing random vectors, we
also experimented with the surface vectors of the mesh, such as
outward normal vectors of faces and vertices and vectors paral-
lel to the edges. We found no differences of how the vectors are
selected. The number of vectors plays a more influential factor.

4.1.2. Analyze an Unfolding

An edge unfolding usually contains multiple overlaps and is not
a valid net. However, we can still obtain valuable information
about the foldability of the mesh from an invalid net.

Given an edge unfolding represented by a tree T , and let L =

{( fi, f j,i)} be a list of overlapping face pairs ( fi, f j) in T . If L
is empty, then we found a valid net; otherwise we will use L to
determine the foldability likelihood of T . Given a face f of T ,
let CC( f ) be a set of non-overlapping faces that contains f . We
say that CC( f ) is maximized if no additional faces can be added
to CC( f ) without overlapping with the members of CC( f ). To

compute the maximized CC( f ), we start with CC( f ) = { f }, and
then iteratively test the faces of T adjacent to the current CC( f )
in breadth-first search manner, i.e., only expand CC( f ) via the
fold edges and not the cut edges. Let f ′ be an adjacent facet
that does not overlap with the facets of CC( f ), then CC( f ) =

CC( f ) ∪ f ′.

After the maximized CC( f ) is found, the foldability matrixM
is updated so that all elements between f and f ′ ∈ CC( f ) are in-
creased by one, i.e. M( f , f ′) =M( f ′, f ) =M( f , f ′) + 1,∀ f ′ ∈
CC( f ). This operation is repeated for all faces for a given T .

When multiple unfoldings are performed on the same mesh,
the foldability likelihood matrixM accumulates the likelihood
estimation.

4.2. Segment

After the foldability likelihood of all pairs of faces is deter-
mined, we use spectral clustering [18] to cluster the faces. Al-
though other clustering methods can also be used, we found that
spectral clustering gives consistent and better results. For exam-
ple, we attempted to use Lloyd’s algorithm [19] that ensures all
clusters are made of connected faces, but this approach usually
results in sub-optimal clusters because the idea of cluster center
cannot be easily defined. An example of the clustered foldabil-
ity matrix using spectral clustering can be found in Fig. 7.

Since we use Steepest Edge Unfolding for determining the fold-
ability which has a strong preference for convex shapes, the seg-
mentations generated by spectral clustering are usually nearly
convex (see Fig. 12) which gives us several advantages: 1) each
component is easier to unfold to a net. Sometimes the net can
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be obtained by using heuristic methods alone (no GA involved,
detailed in Section 4.3); 2) it is much easier to find a contin-
uous folding motion for nearly convex shape, e.g., the fold-
ing path is a straight line in the configuration space [3], that
ensures that the net can be continuously folded to 3D without
self-intersection which is critical for building self-folding robot
with rigid materials. 3) easier to fold the net by hand as stated
in Section 5.2; over existing non-convex unfolders.

Figure 7: Left: Clustered foldability matrix of the monkey model in Fig. 9.
A darker pixel indicates higher possibility of unfolding the corresponding face
pair without overlapping. 10 blocks along the diagonal represent the 10 clusters
found and correspond to the segmentation of the monkey model. Right: Before
(top) and after (bottom) isolated facets are reassigned.

Spectral clustering does not consider face adjacency, therefore
some triangles may be separated from the main components.
Our experiments show that, if there exist multiple connected
components in a given cluster, these isolated components are
much smaller in size than the main component in the given clus-
ter. Even on more complex models as shown in Fig. 12, the iso-
lated faces are usually less than 1% among all faces. Therefore,
a post-processing step is suffice to enforce every cluster to con-
tain only connected facets. Given that f is a face disconnected
from the the largest component in its cluster Ci and is adjacent
to the clusters {C j,i}. Then f is reassigned to a new cluster C j

to maximize the co-foldability

arg max
j

∑
f ′∈C j

area( f ′)M( f , f ′) . (1)

The snail model shown in Fig. 7 illustrates an example before
and after the isolated components are reassigned.

4.3. Unfold to a Single Net

Elliptic vertices have zero or positive Gaussian curvature and
have the sum of the vertex angles of adjacent faces S v ≤ 2π
while hyperbolic vertices have negative Gaussian curvature and
S v > 2π. A convex polyhedron only contains elliptic vertices,
one cut on its adjacent edges is sufficient to unfold that vertex
without local overlaps, i.e., all the adjacent faces of that vertex
do not overlap. For hyperbolic vertices, at least two cuts are
required in order to avoid local overlaps on the unfolding. Non-
convex polyhedra usually contain hyperbolic vertices, heuristic
methods developed for convex polyhedra which find one best
cut edge for each vertex no longer works on non-convex poly-
hedra.

Theorem 4.1. For a polyhedral surface M, if M has a net N
then ∃W, weights of dual edges, such that the minimum span-
ning tree (MST) of the dual graph of weights W leads to N.

Proof. Given N, we can construct W as following, set weights
to 0 for dual edges kept in N and set weights to 1 for dual edges
cut to obtain N.

Unfolding Evolution Fortunately, after segmentation, each
component becomes nearly convex (but not exactly), in this
case, aforementioned heuristic methods could generate approx-
imate solutions, that are unfoldings with fewer overlaps (some-
times 0 overlap), which give us a good starting point. Our idea
is to use Genetic Algorithm to evolve the unfoldings by mu-
tating the weights on the dual edges to reduce the number of
overlaps in the unfoldings and finally find a net with 0 overlaps.
A genetic algorithm requires: 1) a genetic representation (gene)
of the solution domain. In our case, it will be the weights of all
dual edges. 2) a fitness function for evaluating the solution. We
evaluate an unfolding (generated by finding a MST of the dual
graph, the gene represents the dual edge weights) using the fit-
ness score defined as: f = −(λoNo + λlNl), where No is the
number of overlaps in the unfolding and Nl is the number of
hyperbolic vertices that cause local overlaps in the unfolding,
λo and λl are their coefficients and were set to 1 and 10 respec-
tively in our experiments. Since local overlaps are harder to
resolve than global ones thus they play a more important role in
the fitness function.

We generate p unfoldings using randomly picked heuristic
methods as the initial population. In each generation, b new
unfoldings are generated from randomly picked parents using
genetic operators (crossover and mutation) and they are used to
replace the worst unfoldings (with lowest fitness) in the popu-
lation. During the evolution, we are expected to see better and
better individuals (with fewer overlaps). Once the fitness be-
comes zero, we found a net.

If GA fails to find a net within certain generations (maybe due
to local minima), we restart the evolution for at most r times.
If still no net can be found, it means that mesh is likely to be
ununfoldable, we will segment it using the proposed method
and find a net for each segmentation recursively.

It is important to note that the GA method described above
can be replaced with any nonconvex mesh unfolders, including
[12]. Our goal here is to demonstrate that a nonconvex mesh
unfolders can be greatly enhanced by incorporating it with the
clustered foldability matrix. For example, even for a small
mesh, such as the Snail model (Fig. 7), the proposed method
is three times faster (about 250 seconds) than using GA alone
to unfold the entire mesh.

4.4. Close the Loop - Continuous Folding

All previous methods export nets as the final product, however,
the loop is still open. Whether there exists a continuous folding

5



motion that transforms the net back to the original mesh is un-
known. It becomes critical if we would like to build a physical
self-folding robot with rigid material, for which, bending on the
panels is not allowed. We employ the method from [3] to plan
continuous folding motion for the net to close the loop. The
folding motion found can be either used as a visual guidance
for paper crafting or part of folding strategy for the self-folding
robot. If it failed to find a folding motion of a net for certain
amount of time which means that the net is hard to fold. In this
case, we could further segment the mesh/patch which the net is
unfolded from. The folding motion can be best visualized from
the accompanied video.

5. Experiments and Results

5.1. Setup

The proposed method is implemented in single-threaded C++.
Unless stated otherwise, the experimental results reported in
this section are setup as follows. To train the foldability ma-
trix, we run the steepest-edge heuristic 400 times. GA popula-
tion is set to 500 and the maximum GA generation is 2000. In
each generation, 40 new unfoldings will be generated. All data
are collected on a workstation with two 2.3GHz Intel Xeon E5-
2630 CPUs.

5.2. Segmentation, Unfolding, and Fabrication Results

Figs. 8 to 10 show the segmentations and nets produced by the
proposed method and the crafted paper models. All nets are
arranged and cut from 12 inch by 12 inch paper sheets; tabs are
not used to allow larger nets. The paper craft is then fabricated
by gluing the cut edges from inside the model using hot glue
gun. One significant crafting benefit provided by the proposed
method is that each part is much more convex than the input
model, thus the user can simply crease all edges as mountain
folds without even consulting fold assignment in the nets, and
then only reverse the folds for (usually much fewer) concave
edges.

It is worth noting that the difficulty of making these triceratops,
monkey and Yi Sun-sin paper crafts in Figs. 8 to 10 is quite
high. They took us about 12, 21 and 36 hours to make, respec-
tively. These meshes have not only many triangles (between
1000 and 3000) but also have even none-zero genus. Compar-
atively, the models studied in the literature are all significantly
smaller than ours. For example, two models with 270 faces and
200 faces are crafted by [4]. The most complex model in [10]
has 347 faces and requires 25 hours of crafting time . In [12],
the most complex model studied has 950 faces and the most
complex paper craft created has 344 faces and required about
an hour of crafting time. The significant crafting-time reduc-
tion in [12], from 25 hours reported in [10] to 1 hour for models
with similar complexity, is mostly due to the crafting method.
In [12], taping, instead of gluing, is used to connect cut edges.
When taping is used to produce a paper craft with 128 faces

produced by [10], the reported difference is only 8 minutes at
most.

Parameter study There are two main parameters in the pro-
posed method, namely the number of training runs r and the
(initial) net (or part) counts n. Table 1 shows a study of vari-
ous combination of r and n of the Squirtle model. Let us look
at the variable r first. When the number of n is small (5 or 7),
then 100 runs of training are enough to stabilize the results as
the segmentation remains the same when r increases to 200 and
400. However, when the number of n is larger (9 or 11), 100
runs of training are insufficient. The segmentation around the
torso becomes unnatural. This unnaturalness disappears when
r increases to 200. When r increases to 400, the segmentation
changes only slightly. Note that, when r = 400, the proposed
method produces pretty reasonable results regardless the values
of n.

Table 1: Segmentations created by varying the cluster size n and the number of
training runs r.

r n = 5 n = 7 n = 9 n = 11

100

200

400

Unfolding heuristics Although we have been using steepest-
edge unfolding to create the nets in our examples so far, the
training of foldability matrix can be also done using other
heuristics. Table 2 shows example outputs of two models us-
ing various heuristics including a hybrid heuristic that combines
steepest-edge and flat-tree. For all experiments reported in Ta-
ble 2, the number r of unfolding training runs is fixed at 400 and
the number n of segmentation is at 9. First, all segmentation re-
sults are similar regardless the heuristics used. The segmenta-
tions trained using steepest-edge and flat-tree unfoldings are not
identical but (semantically or anatomically) reasonable in their
own ways. Even when unfolding using random edge weights
is used, the proposed method is able to produce meaningful
segmentation (hands of the monkey) although its segmentation
boundary is not as clean as the other methods. For instance, the
head and torso of the monkey are connected and the face of the
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(a) Segmentation (b) Crafted paper model

Figure 8: Left: the model of triceratops (1000 triangles) is decomposed into 11 clusters by the proposed method. Right: The paper craft of the triceratops model,
which is 32 cm wide, 9 cm deep and 15.5 cm tall.

man is not smoothly separated from the hairs. However, it is to
our surprise that even randomly unfolding the mesh (followed
by overlapping analysis) can provide useful part information.

Table 2: Segmentation results with various training runs. From left to right:
(1) 400 runs of steepest-edge unfolding, (2) 400 runs of flat-tree unfolding, (3)
200 runs of steepest-edge + 200 runs of flat-tree unfolding, and (4) 400 runs of
random unfolding.

steepest edge flat tree both random

5.3. Compare to Existing Unfolders

In this section, we compare the proposed method with the state-
of-art methods, namely a widely used Pepakura Designer [20]
and a genetic programming approach [12]. Table 3 shows the
number of nets produced by these methods. The method by
[12] is parameterized to minimize the final number of nets, thus
can be viewed as a reasonable lower bound provided by a global
optimization method. Two numbers are reported by our method
in Table 3. The numbers in the parenthesis are the initial sizes
provided by the user, and the other number is the number of nets
produced. The users usually offer the initial size by counting
the number of meaningful parts of a given model. Because not
all the parts are unfoldable, our method must produce more nets
than requested. Also because of the same reason, the number of
the nets produced by our method for models with lower triangle
count (such as snail and triceratops) is often larger than those
produced by [12]. However, for models with higher triangle

counts (e.g. those with more than 2000 triangles), our method
often creates fewer number of nets (except the dragon model).

Table 3: Compare the number of components created by the proposed methods,
Pepakura Designer 3 [20], and Takahashi et al. [12]. The numbers in the paren-
thesis reported by the proposed method are the initial sizes provided by the user
by counting the number of meaningful parts of a given model.

Triangle Number of components
Models size Ours [20] [12]
Snail (Fig. 7) 574 5 (5) 5 1
Peekaboo (Fig. 13) 1000 9 (9) 18 N/A
Dinosaur (Fig. 13) 1000 9 (9) 29 N/A
Triceratops (Fig. 8) 1000 11 (11) 36 5
Squirtle (Fig. 6) 1718 6 (6) 18 4
Angel (Fig. 13) 2000 16 (11) 42 14
Monkey (Fig. 9) 2000 10 (10) 50 13
Children (Fig. 2) 3000 16 (13) 68 17
Yi Sun-sin (Fig. 10) 3000 11 (9) 79 N/A
Dragon (Fig. 13) 5000 34 (11) 130 16

5.4. Compare to Shape Segmentation Benchmark

We also validate the proposed method on some models from
the Princeton Shape Segmentation Benchmark [21]. Although
we are not using any surface or volumetric shape features, we
show that segmenting via foldability analysis achieves compet-
itive results comparing to the state of art segmentation methods.
For fair comparison, we set the number of clusters k for each
category as the average number of components for that cate-
gory reported in [16]. Note, measurements can be improved if
we choose the best k for each model individually. In Fig. 11,
we show rand index (RI) [22], a metric that measures the sim-
ilarity of whether a pair of faces are in the same segmentation,
and cut discrepancy (CD) [21], which is the sum of distances
between points in a cut to the closest cut in the ground truth.
In Fig. 12, we show the segmentation results obtained by the
proposed method.
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(a) Segmentation (b) Crafted paper model

(c) Results from Takahashi et al. Takahashi et al. [12]

Figure 9: Top left: The model of monkey (2000 triangles) is decomposed into 10 clusters by the proposed method. Top right: The paper craft of the money model,
27 cm wide, 8 cm deep and 23 cm tall. Bottom left: The nets generated by Takahashi et al. [12] (13 parts) that is trying to minimize the number of parts. Notice the
large variation in net sizes. Bottom right: The nets created by the proposed method (10 parts) have even sizes.

6. Discussion and Limitations

The proposed method is capable of producing small number of
nets that resemble the semantic parts of the input model. How-
ever, it has three main limitations. First, in our current imple-
mentation, the initial number of parts remains a user parameter.
Even though providing this number is typically not a great bur-
den to the user, it is desirable to use one of the existing methods
to estimate the number of semantic parts.

The second limitation of our method is the computation time.
Pepakura designer [20] takes between 1 to 6 seconds to unfold
the models in this paper. However, it takes about half an hour
for our method to generate nets for a mesh of 1000 faces. The
running time of our method grows nearly as a quadric function
of |F| (if we have a constant maximum generations limit in GA).
One way to speed up the computation is to employ graph cut to
segment the mesh similar to what shape diameter function [23]
and continuous visibility feature [24] did. Note that, while the
method from Takahashi et al. [12] is fast for smaller meshes,
e.g., 15 seconds for a mesh with 312 faces. but it takes more
than 2 hours to finish unfolding a mesh with 2000 faces.

Another limitation comes from the fabrication aspect. Even

with the help of semantics and convexity, crafting a paper model
with more than 3000 triangles remains time consuming and la-
bor intensive. Models smaller than 3000 triangles, such as most
of the models that we showed in this paper, cannot provide
much surface details (such as wrinkles or surface texture). It
requires further research to find out how these detailed surface
features can be preserved without significantly increasing the
fabrication burden.

7. Conclusion

With the advances in active materials, making 3D shapes from
planer shapes finds its new application: self-folding machines.
“Unfolding and folding” is one the prevailing ways to design
and build such robots. In this paper, we propose a novel ap-
proach that unfolds and segments a given 3D mesh simulta-
neously by learning from self-unfolding. Compare to existing
methods, the proposed method provides semantic segmenta-
tions, reduces the number of components and makes folding
much easier. We show that the nets produced by the proposed
method can be used to create more complex paper craft (e.g.,
3000 faces in 36 hours in Fig. 10) comparing to the results re-
ported in the literature (e.g., 347 faces in 25 hours [10]).
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(a) Segmentation (b) Crafted paper model

(c) Results from Pepakura Designer [20]

Figure 10: Top left: The statue of Korean general Yi Sun-sin (3000 triangles) is decomposed into 11 clusters by the proposed method. Top right: The paper craft
of the model, which is 9.7 cm wide, 9.7 cm deep and 21.2 cm tall. Bottom left: The nets generated by Pepakura Designer [20] (79 parts). Bottom right: The nets
generated by the proposed method (11 parts). The unfolder developed by Takahashi et al. [12] is unable to unfold the model perhaps due to that the mesh is not
water tight.
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Figure 11: Comparison of rand index and cut discrepancy measures on Prince-
ton Shape Segmentation Benchmark. For both RI and CD measures, the lower
the better.
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Figure 13: Additional examples. From top to bottom: Peekaboo, dinosaur, angle, dragon. See Table 3 for triangle count and net count.
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