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Abstract: Computing the Minkowski sum of two polyhedra exactly has been shown
difficult. Despite its fundamental role in many geometric problems in robotics, to
the best of our knowledge, no 3-d Minkowski sum software for general polyhedra is
available to the public. One of the main reasons is the difficulty of implementing the
existing methods. There are two main approaches for computing Minkowski sums:
divide-and-conquer and convolution. The first approach decomposes the input poly-
hedra into convex pieces, computes the Minkowski sums between a pair of convex
pieces, and unites all the pairwise Minkowski sums. Although conceptually simple,
the major problems of this approach include: (1) The size of the decomposition and
the pairwise Minkowski sums can be extremely large and (2) robustly computing
the union of a large number of components can be very tricky. On the other hand,
convolving two polyhedra can be done more efficiently. The resulting convolution
is a superset of the Minkowski sum boundary. For non-convex inputs, filtering or
trimming is needed. This usually involves computing (1) thearrangement of the
convolution and its substructures and (2) the winding numbers for the arrangement
subdivisions. Both computations are difficult to implementrobustly in 3-d. In this
paper we present a new approach that is simple to implement and can efficiently
generate accurate Minkowski sum boundary. Our method is convolution based but
it avoids computing the 3-d arrangement and the winding numbers. The premise of
our method is to reduce the trimming problem to the problems of computing 2-d
arrangements and collision detection, which are much better understood in the lit-
erature. To maintain the simplicity, we intentionally sacrifice the exactness. While
our method generates exact solutions in most cases, it does not produce low dimen-
sional boundaries, e.g., boundaries enclosing zero volume. We classify our method
as ‘nearly exact’ to distinguish it from the exact and approximate methods.
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(a) (b) (c)

Fig. 1: Can you find a configuration that keeps the knot (in red)interlocked but without colliding
with the cubic frame (in white) in the figure (a) above? Although it seems, from an external view
(b), the Minkowski sum boundary of the knot and the frame models issimple, the inside view (c)
shows that the Minkowski sum contains many holes. By placing the knot’s reference point in one
of these holes, the knot remains interlocked and collision free with the frame. There are in total 10
510 facets in this Minkowski sum boundary.

1 Introduction

Given two geometric models and their configurations in the space, such as the knot
and the frame models shown in Fig. 1(a), there are several important questions that
we can ask about these two models. For example, what is their shortest separa-
tion distance? Is it possible to physically separate the knot and the frame without
intersections? If not, can we modify the knot, e.g., make theknot thinner, so the
problem above becomes solvable? What are the set of the collision-free configura-
tions that makes the knot and the frame interlocked? The answers to these questions
play central and fundamental roles in algorithmic robotics, such as motion planning,
penetration depth estimation, and object containment. However, all these questions
are not easy to answer either visually or computationally due to the geometrical and
topological complexity of the problem. In fact, these questions are all closely related
to the concept of set sum (also known as the Minkowski sum). The Minkowski sum
of two polyhedraP andQ is defined as:

P⊕Q = {p+q | p∈ P,q∈ Q}. (1)

In Fig. 1(b) and Fig. 1(c), we show the Minkowski sum of the knot and the frame.
The inner view reveals a large number of holes in their Minkowski sum despite
the simplicity of the input models. Indeed, computing the Minkowski sum of non-
convex polyhedra can have the time complexity as high asO(n3m3) [12], wherem
andn are the complexity of the input models.

Given two polyhedral modelsP andQ represented by their boundaries∂P and
∂Q, theboundaryof their Minkowski sum∂ (P⊕Q) 6= ∂P⊕∂Q. Therefore, comput-
ing the boundary-based representation of the Minkowski sums is more than applying
Eq. 1 toP andQ. Many methods have been proposed during the last three decades.
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Even though several methods [13, 4, 8, 5] are known to computethe Minkowski
sum ofconvexpolyhedra efficiently in 3-dimensions, most approaches proposed for
general polyhedra remain in theoretical stage. Only a few practical implementations
exist and none of them are available to the public. We will provide a more detailed
review on the related work in Section 2.

Our approach. An important goal of our work is to provide a simple method
that can efficiently and accurately compute the Minkowski sum boundaries. The
proposed method is based onconvolution. The convolution of two polyhedraP and
Q is a set of facets in 3-d that is generated by ‘combining’ the facets ofP andQ and
forms a superset of the Minkowski sum boundary ofP andQ. Convolution will be
defined more carefully in Sections 2 and 3.1.

Briefly, our method first generates the convolution and computes the facet-facet
intersections within the convolution. These intersections then induce an arrange-
ment of line segments embedded on each facet. The cells from all the (2-d) arrange-
ments are then merged into ‘simple regions’ (defined in Section 3.4), which are then
filtered so that only the regions on the boundary are kept. We deliberately avoid
computing the 3-d arrangement and the winding numbers, which have been shown
difficult to compute robustly. Our method is designed to tolerate inaccuracy in the
convolution and depends only on solving the problems of 2-d arrangement and col-
lision detection, which are much better understood in the literature. We will discuss
the details of our method in Section 3.

Our method does not solve the problem of 3-d Minkowski sum entirely. The
simplicity of our method is gained by sacrificing the exactness. That is our method
provides onlynearly exactMinkowski sum whose low dimensional boundaries, e.g.,
boundaries enclosing zero volume, arenot identified. Fortunately, whenP andQ do
not interlock too tightly, the proposed method keeps all boundaries exact (although
may still suffer from numerical errors), thus provides moreaccuracy than the ap-
proximate methods [19, 14] do. We should also point out that our method shares
some similarity with our previous work on the point-based method [14]. Beside the
difference in their representations (mesh vs. points), theproposed method provides
significant improvements over the point-based method in terms of both quality and
efficiency. We will carefully compare these two approaches in Section 4.

2 Related Work

During the last three decades, many methods have been proposed to compute the
Minkowski sums of polygons or polyhedra; see more detailed surveys in [6, 19, 4]
for the Minkowski sums of the models in boundary-based representation. Despite
the large volume of work, most methods can be categorized into one of the two main
frameworks: divide-and-conquer and convolution.

Divide-and-Conquer. In the divide-and-conquer framework, the input models
are decomposed into components. Because computing the Minkowski sum of con-
vex shapes is easier than non-convex shapes, convex decomposition (either surface
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or solid) is widely used. The next step in this framework computes the pairwise
Minkowski sums of the components. Finally, all these pairwise Minkowski sums
are united to form the final Minkowski sum of the input shapes.

This approach is first proposed by Lozano-Pérez [16] to computeC -obst for mo-
tion planning. Although the main idea of this approach is simple, the divide step
(i.e., convex decomposition) and the merge step (i.e., union) can be very difficult
to implement robustly in practice, in particular when the input shapes are complex.
For example, it is known that creating solid convex decomposition robustly is dif-
ficult, e.g., it is necessary to maintain the 2-manifold property after the split [2]. In
addition, Agarwal et al. [1] have shown that different decomposition strategies can
greatly affect the efficiency of this approach. Hachenberger [11] presents a robust
and exact implementation using the Nef polyhedra in CGAL. However, his results
are still limited to simple models.

The union step is even more troublesome. The decomposition step normally gen-
erates many components. Even though methods exist to perform union operation,
no existing methods can robustly compute the union of thousands even millions of
pairwise Minkowski sums. In particular, the size and the complexity of the geometry
generated during the intermediate steps can be overwhelming. Flato [3] computes
the unions using the cells induced by the arrangement of the line segments. He uses
a hybrid strategy that combines arrangement with incremental insertion to gain bet-
ter efficiency. Hachenberger [11] also studies how the orderof the union operation
affects the efficiency. To avoid this explicit union step, Varadhan and Manocha [19]
proposed an approach that generates meshes approximating the Minkowski sum
boundary using marching cube technique to extract the iso-surface from a signed
distance field. They proposed an adaptive cell to improve therobustness and effi-
ciency of their method. Because their approach still depends on convex decomposi-
tion, it still suffers from the excessive number of convex components from decom-
position.

Convolution. The convolution of two shapesP andQ, denoted asP×Q, is a set
of line segments in 2-d or facets in 3-d that is generated by ‘combining’ the segments
or the facets ofP andQ [9]. One can think of the convolution as the Minkowski
sum that involves only the boundary, i.e.,P×Q = ∂P⊕ ∂Q. It is known that the
convolution forms a superset of their Minkowski sum [6], i.e., ∂ (P⊕Q) ⊂ P×Q.
To obtain the Minkowski sum boundary, it is necessary to trimthe line segments or
the facets of the convolution.

For 2-d polygons, Guibas and Seidel [10] show an output sensitive method to
compute convolution curves. Later, Ghosh [6] proposed an approach, which unifies
2-d and 3-d, convex and non-convex, and Minkowski addition and decomposition
operations. The main idea in his method is the negative shapeand slope diagram.
Slope diagram is closely related toGaussian map, which has been recently used to
compute to implement robust and efficient Minkowski sum computation of convex
objects by Fogel and Halperin [4]. Kaul and Rossignac [13] proposed a linear time
method to generate a set of Minkowski sum facets. Output sensitive methods that
compute the Minkowski sum of polytopes ind-dimension have also been proposed
by Gritzmann and Sturmfels [8] and Fukuda [5].
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The main difficulty of the convolution-based methods is to remove the portion
of the facets that are inside the Minkowski sum. Recently, Wein [20] shows a ro-
bust and exact method based on convolution for non-convex polygons. To obtain
the Minkowski sum boundary from the convolution, his methodcomputes the ar-
rangement induced by the line segments of the convolution and keeps the cells with
non-zero winding numbers. No practical implementation is known for polyhedra
using convolution due to the difficulty of computing the 3-d arrangement and its
substructures [18].

Point-Based Representation. Alternatively, points have been used to represent
the Minkowski sum boundary. Representing the boundary using only points has
many benefits. First of all, generating such points is easierthan generating meshes
and can be done in parallel and in multi-resolution fashion.Moreover, point-based
representation can be generalized to higher dimensional motion planning problems
[15].

Peternell et al. [17] proposed a method to compute the Minkowski sum of two
solids using points densely sampled from the solids, and compute local quadratic
approximations of these points. However, their method onlyidentifies the outer
boundary of the Minkowski sum using a regular grid, i.e., no hole boundaries are
identified. This can be a serious problem in particular when we study problems in
motion planning and penetration depth computation.

We proposed a completely different method [14] that guarantees to produce a
point setcovering the boundary. However, our method also has drawbacks. For
example, a large number of points are required if the Minkowski sum has small
features (e.g., the models in Fig. 9). In addition, our method treats each point inde-
pendently. This is good for the purpose of parallelization but the local relationship
between the neighboring points is completely ignored. The method proposed in this
paper does not suffer from these problems.

3 Our Method

In this section, we begin to discuss more details about the proposed method. The
proposed method is convolution based and comprises five mainsteps. Our method
first computes the convolution using a brute force method (Section 3.1). Then, we
identify all the intersecting facets in the convolution (Section 3.2). Next, each facet is
subdivided into sub-facets from the facet-facet intersections (Section 3.3). All sub-
facets are stitched intosimple regionsbased on the properties that will be discussed
later (in Section 3.4). A simple region is either entirely inside or entirely on the
boundary of the Minkowski sum. Finally, we use a collision detector to remove
the regions inside the Minkowski sum (Section 3.5). We conclude this section by
providing a discussion on the benefits provided by the proposed method and its
current limitations (Section 3.6).
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3.1 Brute force convolution

We use a brute force method to compute the convolution because of its simplicity. As
we will see in our experiments, the convolution step actually takes very little time
(on average 0.4% of the entire computation), even using the brute force method,
comparing to all the other steps.

Our brute force method checks all possible facet/vertex andedge/edge pairs ofP
andQ and keeps all the facets that satisfy the criteria stated in Observation 3.1. The
result of the brute force convolution is a set of facets that reside in the interior and
on the boundary of the Minkowski sum.

f

v

e2

e1

Fig. 2: Gaussian map off v- (left) andee-
(right) facets.

Given two polyhedraP andQ, the
convolution ofP andQ can only come
from two sources [13]: (i) the facets,
called f v-facets, generated from a
facet of P and a vertex ofQ or vice
versa and (ii) the facets, calledee-
facets, generated from a pair of edges
from P andQ, respectively.

Observation 3.1 A facet f and a vertex v produce a valid f v-facet if and only if
the normal of f is inside the region enclosed by the normals ofthe facets incident
to v in the Gaussian map. Similarly, a pair of edges e1 and e2 form an ee-facet if
the corresponding edges in the Gaussian map cross each other. Fig. 2 illustrates the
necessary conditions of both f v- and ee-facets.

Our goal in the next few steps is to remove the portions of the convolution inside
the Minkowski sum.

3.2 Facet-facet intersections

The goal of this step is to identify all the intersecting facets for each facet in the
convolution. To do so, we construct a bounding volume hierarchy from top-down
using spheres that enclose all the facets. For each facet, weuse its bounding sphere
to identify all the intersecting spheres, which contain potential intersections. Fi-
nally, the intersecting facets are then determined from allthese spheres. Because
all the facets generated in the convolution must be convex ifthe input models have
only convex facets, exact facet-facet intersection can be performed efficiently in 3-
d. Without the loss of generality, we assume that the models used in this paper are
composed of triangles.
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3.3 Split facets

We use the intersections above to split the convolution facets. Essentially, this step
computes the 2-d arrangements of the facet-facet intersections obtained from the
previous step. For each facet, we project the intersectionsto the supporting plane of
the facet. The arrangement embedded in the facet is induced by these projected line
segments and the boundary of the facet. It should be noted that when the interior of
a segment partially or entirely overlaps with other segments, we handle this degen-
erate case by creating cells with zero areas enclosed by the overlapped segments.
As we will see later, these ‘area-less’ regions also serve asa form of ‘insulator’ to
prevent the facets from being stitched.

For the facet without any intersections, we simply treat it as an arrangement with
a single cell (two cells if we count the unbounded subdivision). To simplify our
discussion, we call a cell created in this step a ‘sub-facet.’

3.4 Stitch sub-facets

e

e

Fig. 3: Examples of facets
that cannot be stitched.

Our goal in this step is to stitch all the sub-facets into
simple regions. A simple region is composed of a set
of contiguous sub-facets that are completely on the
Minkowski sum boundary or are completely inside
the Minkowski sum. Our method constructs the sim-
ple regions by stitching the neighboring sub-facets
iteratively until all sub-facets are stitched. We say
that two sub-facetsf1 and f2 are neighbors if they
share an edge.

Stitching criteria. Let C be an existing compo-
nent and letf1 be a facet on the boundary ofC. We
further let f2 be a neighbor off1 that is not inC and
let e12 be the edge shared byf1 and f2. Then f1 and
f2 are stitched if they do not violate the following
constraints.

1. e12 does not overlap with the intersections of theinterior of the convolution
facets.

2. e12 is 2-manifold.

Note that the first constraint can be readily checked from theintersection step
earlier and is in fact a special case of the second constraint. This is because a pair
of intersecting facets must generate a non-manifold region. The second constraint is
used to check for non-manifold edges shared by more than two the adjacent (non-
intersecting) sub-facets. Fig. 3 shows two examples that violate these criteria.
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3.5 Determine the boundary regions

In this final step, we determine which simple regions are non-boundary regions and
should be discarded using collision detection calls. Our method uses the close rela-
tionship between the Minkowski sum boundary and the conceptof “contact space”
in robotics. Every point in the contact space represents a configuration that places
the robot in contact with (but without colliding with) the obstacles. Given a trans-
lational robotP and obstaclesQ, the contact space ofP andQ can be represented
as∂ ((−P)⊕Q), where−P = {−p | p ∈ P}. In other words, if a pointx is on the
boundary of the Minkowski sum of two polyhedraP andQ, then the following con-
dition must be true:

(−P◦ +x)∩Q◦ = /0 ,

whereQ◦ is the open set ofQ and(P+x) denotes translatingP to x.
Using this observation, we can determine if a simple regionR is on the boundary

by simply placing−P at a pointx sampled from a facetf ∈Rand testing if(−P+x)
is in collision withQ. If (−P+ x) is collision free, then we can conclude thatR is
on the Minkowski sum boundary. Otherwise, we discardR.

3.6 Discussion and Implementation Details

The proposed method is simple and efficient, but it does not produce low dimen-
sional (isolated) boundaries composed of only edges and vertices. In this section,
we provide more detailed discussion regarding the implementation and the advan-
tages and the limitations (and possible improvements) in some steps of the proposed
method. The readers can also skip these details and go to Section 4 for experimental
results.

Convolution. Our brute-force method does not compute exact 3-d convolutions,
but a superset of the convolution. As far as we know, no practical method can com-
pute the convolution of polyhedra exactly and robustly, even though methods exist
to compute the convolution of polygons, such as the techniques in [10, 20]. Our
method, unlike [20, 10], does not use the (mesh) connectivity of P andQ to con-
struct the convolution, and, due to numerical errors, may generate ‘isolated’ facets
in the final ‘convolution’ instead of a set of closed 2-manifolds. Note that all the
isolated facets are inside the Minkowski sum boundary.

These two weaknesses of our brute-force method make the computations of the
arrangement and the winding numbers even more difficult. However, because we
intentionally avoid these two steps, our method does not suffer from the inaccuracy.

Given two polyhedraP andQ with sizem andn, the brute-force method takes
O(mn) time. As we mentioned earlier, the convolution step is not the bottleneck
of the entire computation. Even though computing the convolution from the non-
planar Gaussian maps using a strategy similar to the ideas in[10, 20] can definitely
increase the efficiency, the improvement to the entire computation is limited.



A Simple Method for Computing Minkowski Sum Boundary in 3D 9

Facet-facet intersection. We use bounding sphere hierarchy to detect the inter-
sections. We use spheres because they are invariant under rotation. This step takes
O((N + k) logN) time, whereN = mn is the size of the convolution andk is the
intersection size.

Stitch sub-facets. The idea of stitching is to maintain a set of the largest 2-
manifolds from the convolution. We claim that each of this 2-manifold is a simple
region. The criteria proposed to construct the simple regions (in Section 3.4) also
focus this goal. In Lemma 0.1, we show that these two criteriais indeed sufficient
to generate simple regions.

Lemma 0.1. A simple region is either on the Minkowski sum boundary or in the
interior of the Minkowski sum if the simple region is constructed using the criteria
in Section 3.4.

Proof (Sketch).Let C be the convolution of two polyhedra and letA(C) be the ar-
rangement ofC. Essentially, a simple region identified in Section 3.4 is a set of
contiguous sub-facets that form or entirely reside on the boundary shared by two
(3-d) cells ofC(A). Since a cell must not cross the Minkowski sum boundary, the
simple region will not cross the boundary. Thus, a simple region is either on the
boundary or in the interior of the Minkowski sum.

Given the strong connection between the simple region and the arrangement cell,
one might wonder if we can further stitch the simple regions into cells. There are
several reasons that we do not go in this direction. First, given x cells in the ar-
rangement of the convolution, there can beO(x) simple regions, Therefore, further
stitching regions into cells may not improve the efficiency (at least asymptotically).
Second, this additional step greatly increases the difficulty of the implementation.
Many degenerated cases, in particular with isolated regions, should be considered. In
addition, from our preliminary results, little or no performance is gained by stitching
further. Due to these reasons, we do not further stitch simple regions into arrange-
ment cells.

Determine the boundary regions. We use collision detection calls to determine
the type of a simple region. For detecting collisions, we usea modified version of
RAPID [7]. An issue that we have to deal with when working withRAPID (and
most collision detectors) is that RAPID cannot distinguishif two objects are in the
contact configurations or are in fact in collision. To work around this problem, we
perturb each point we sampled with an infinitesimally small vector pointing in the
outward direction of the facet (from the convolution) wherethe point is sampled
from. Note that the normal directions of allf v- andee-facets are readily available
from the convolution step.

After the perturbation, the point will most likely become collision free if it is
indeed on the Minkowski sum boundary. The exceptions to the above case occur
when the Minkowski sum boundary degenerates to an isolated vertex, edge or sliver
(enclosing zero or a very small volume). This is the reason why our method provides
only ‘nearly’ exact Minkowski sum.
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Sphere (500) Cone (78) Axes (36) Frame (96) Knot (992)

Wrench (772) Clutch (2116) Bull (12396) Inner Ear (32236)

Fig. 4: Models used in this paper. The number following the modelname is the number of facets
of the model.

Another concern of using collision detection to replace winding number is the ef-
ficiency. However, as our experiment shows, collision detection, although dominates
the computation in some examples, does not significantly slow down our method.

4 Experimental Results

In this section, we show experimental results. All the experiments are performed on
a PC with two Intel Core 2 CPUs at 2.13 GHz with 4 GB RAM. Our implementation
is coded in C++. For detecting collisions, we use a modified RAPID [7]. Fig. 4
shows a set of models used in this section. All the models and the Minkowski sum
boundaries in our experiments are in Wavefront OBJ format and can be downloaded
from our project webpage.

4.1 Geometric modeling

Our method can be used to perform operations such as offsetting, erosion, and
sweeping on large geometric models. Fig. 5 shows an example of the offsetting
operation of the clutch model. Offsetting is done by computing its Minkowski sum
with a sphere. The top figure of Fig. 5 shows the Minkowski sum boundary (13
974 facets) of the clutch model and the sphere model. Each colored patch (best
viewed from the submittedpdf file) on the Minkowski sum boundary indicates a
simple regionbounded by red line segments. Interestingly, for some models, the red
line segments that separate simple regions tend to go through the areas with high
concavity. Therefore, the simple regions seem to representvisually meaningful seg-
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Fig. 5: Offsetting of the clutch model.

mentations of the model. The bottom figure of Fig. 5 shows an internal view of the
Minkowski sum.

In Fig. 6, we show an example of the swept volumes of two large models: a spoon
and a horse. The swept volume is generated by computing the Minkowski sum of the
spoon and the horse models with a thin tube representing a trajectory. An internal
view of the horse model’s swept volume is also shown.

4.2 Computation time

A step-by-step analysis. Fig. 7 shows our first experiment result using the models
in Fig. 4, which include convex/non-convex models, zero andnon-zero genus mod-
els, and CAD and digitized models. These models are selectedcarefully to test the
proposed method. In Fig. 7, we show the computation time of each Minkowski sum
and the ratio of each step in an entire Minkowski sum computation. It is clear that

(a) (b) (c)

Fig. 6: (a) A swept volume of the spoon model (89 822 facets). The boundary is composed of 138
801 facets. (b) A swept volume of the horse model (39 694 facets). Theboundary is composed of
73 912 facets. (c) An internal view of (b).
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the facet-facet intersection and collision detection steps dominate the computation.
We observe that the ratio of the creation time decreases whenthe size of the model
increases. When the size of the model increases, the intersection step becomes more
dominating. When the models have handles, the ratio of the collision detection in-
creases due to the increasing number of holes (e.g., Frame and Knot).

P⊕Q Cone Axes Frame Knot Wrench Clutch Bull Inner Ear

Sphere Sphere
0.031 0.038 0.14 0.95 0.90 2.7 13.7 13.6

Cone Cone
0.030 0.021 0.12 0.63 0.64 1.5 8.6 7.8

Axes Axes
0.017 0.076 1.17 0.77 1.5 22.1 20.9

Frame Frame
1.38 21.3 4.81 23.5 289.3 202.0

Knot Knot
255.5 37.0 347.0 755.1 920.8

creation intersection

collision detectionsplit/stitch

Fig. 7: Computation time of the proposed method. Each Minkowski sumcomputation is shown as
a pie chart, representing the cost of each step, and a number belowthe chart, representing the total
computation time (in seconds). Models used in this experiment can be found in Fig. 4.

Point-based vs. Mesh-based Minkowski sum. We compare the proposed method
(hereafter named mesh-based method) to the point-based Minkowski sum [14] since
it is the only implementation available to the public that supports general polyhedra.
In order to make fair comparisons, we sample points from the facets generated by
the mesh-based method. Like point-based Minkowski sum, these points form ad-
covering2 of the Minkowski sum boundary. It is obvious that whend is large point-
based method can outperform mesh-based method. In Fig. 8, wevary the value of
d from 10 to 0.05. As we can see that, as the value ofd decreases, the computation
time of the mesh-based method is slightly elevated while thecollision detection call

2 We say that a set of pointsS is ad-covering of a surfaceM if, for every pointmof M, there exists
a point inSwhose distance tom is less thand.
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Fig. 8: Computation time for generating points covering the Minkowski sum boundaries. Notice
that thex andy axes are both in logarithmic scale.

number remain the same. On the other hand, the point-based method slows down
significantly asd decreases due to rapidly increasing detection calls.

In addition to the benefit of being faster than the point-based method, the mesh-
based method proposed in this paper does not suffer from the sampling density
issues. In particular, when small features are present in the Minkowski sum bound-
ary, high density points (i.e., smalld) are needed to reveal these features. In Fig. 9,
we show a ‘classic’ example of two grate-like shapes, from which a large number
points will need to be sampled in order to capture the long andskinny columns of
the Minkowski sum boundary. Our mesh-based method does not suffer from this
problem and successfully generates the exact Minkowski sumboundary.

5 Conclusion

In this paper we proposed a simple 3-d Minkowski sum method. In essence, our idea
is to avoid computing the exact convolution, 3-d arrangement and the winding num-
bers. Instead, we filter and trim facets using only 2-d arrangements and collision de-
tector. Our method starts with an inaccurate convolution generated by a brute force
method. For each facet in the convolution, we subdivide the facet into sub-facets
induced by the arrangement of the facet-facet intersections within the convolution.
Sub-facets are then grouped into simple regions, which are filtered by a collision
detector. Our method does not solve the problem of 3-d Minkowski sum entirely.
The simplicity of our method is gained by sacrificing the exactness. Although pro-
viding only nearly exact Minkowski sum, our method is more accurate than the
approximate methods. In our experiment, we demonstrated the proposed method’s
ability of handling large geometric models. We also showed the efficiency of the
proposed method comparing to the point-based Minkowski summethod. While we
are currently optimizing the performance of our implementation, we plan to release
the software developed for this paper to the public.
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P Q

∂ (P⊕Q) P⊕Q internal

Fig. 9: Minkowski sum of two grate-like models.P has 27 teeth and 540 facets, andQ has 48 teeth
and 942 facets, andP⊕Q has 71043 facets. The total computation time is 318.5 seconds using 1
thread. These models imitate the grate models created by Halperin [12] and from Varadhan and
Manocha [19].
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